Immunologic Research

, 44:127 | Cite as

Revertant somatic mosaicism in the Wiskott–Aldrich syndrome

Article

Abstract

Up to 11% of patients affected with Wiskott–Aldrich syndrome (WAS) have presented with somatic mosaicism due to spontaneous in vivo reversion to normal of the original mutation or second-site compensatory mutations that restored production of the WAS gene product. The reasons underlying the high prevalence of this phenomenon in WAS are unclear and may include strong selective advantage of revertant cells over mutated populations, abnormally high general mutation rate and/or increased susceptibility of specific WAS gene sequences to DNA polymerase errors. Additional studies in human samples and in vitro/in vivo models of the disease will likely yield further insights into the mechanisms responsible for the occurrence of revertant mosaicism in WAS and elucidate additional biological characteristics of the WAS gene and protein.

Keywords

Wiskott–Aldrich syndrome Reversion Mutation Mutation rate DNA polymerase Selective advantage Immunodeficiency Lymphocytes 

References

  1. 1.
    Hirschhorn R. In vivo reversion to normal of inherited mutations in humans. J Med Genet. 2003;40(10):721–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Kvittingen EA, Rootwelt H, Berger R, Brandtzaeg P. Self-induced correction of the genetic defect in tyrosinemia type I. J Clin Invest. 1994;94(4):1657–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Pasmooij AM, Pas HH, Deviaene FC, Nijenhuis M, Jonkman MF. Multiple correcting COL17A1 mutations in patients with revertant mosaicism of epidermolysis bullosa. Am J Hum Genet. 2005;77(5):727–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Wada T, Schurman SH, Otsu M, Garabedian EK, Ochs HD, Nelson DL, et al. Somatic mosaicism in Wiskott-Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci USA. 2001;98:8697–702.PubMedCrossRefGoogle Scholar
  5. 5.
    Hirschhorn R, Yang DR, Puck JM, Huie ML, Jiang CK, Kurlandsky LE. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat Genet. 1996;13(3):290–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Stephan V, Wahn V, Le Deist F, Dirksen U, Broker B, Muller-Fleckenstein I, et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med. 1996;335(21):1563–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Wada T, Toma T, Okamoto H, Kasahara Y, Koizumi S, Agematsu K, et al. Oligoclonal expansion of T lymphocytes with multiple second-site mutations leads to Omenn syndrome in a patient with RAG1-deficient severe combined immunodeficiency. Blood. 2005;106(6):2099–101.PubMedCrossRefGoogle Scholar
  8. 8.
    Rieux-Laucat F, Hivroz C, Lim A, Mateo V, Pellier I, Selz F, et al. Inherited and somatic CD3zeta mutations in a patient with T-cell deficiency. N Engl J Med. 2006;354(18):1913–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Notarangelo LD, Miao CH, Ochs HD. Wiskott-Aldrich syndrome. Curr Opin Hematol. 2008;15(1):30–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;78(4):635–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Imai K, Morio T, Zhu Y, Jin Y, Itoh S, Kajiwara M, et al. Clinical course of patients with WASP gene mutations. Blood. 2004;103(2):456–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Thrasher AJ, Burns S, Lorenzi R, Jones GE. The Wiskott-Aldrich syndrome: disordered actin dynamics in haematopoietic cells. Immunol Rev. 2000;178:118–28.PubMedCrossRefGoogle Scholar
  13. 13.
    Ariga T, Kondoh T, Yamaguchi K, Yamada M, Sasaki S, Nelson DL, et al. Spontaneous in vivo reversion of an inherited mutation in the Wiskott-Aldrich syndrome. J Immunol. 2001;166(8):5245–9.PubMedGoogle Scholar
  14. 14.
    Wada T, Konno A, Schurman SH, Garabedian EK, Anderson SM, Kirby M, et al. Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings. J Clin Invest. 2003;111(9):1389–97.PubMedGoogle Scholar
  15. 15.
    Konno A, Wada T, Schurman SH, Garabedian EK, Kirby M, Anderson SM, et al. Differential contribution of Wiskott-Aldrich syndrome protein to selective advantage in T- and B-cell lineages. Blood. 2004;103(2):676–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Lutskiy MI, Beardsley DS, Rosen FS, Remold-O’Donnell E. Mosaicism of NK cells in a patient with Wiskott-Aldrich syndrome. Blood. 2005;106(8):2815–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Du W, Kumaki S, Uchiyama T, Yachie A, Yeng Looi C, Kawai S, et al. A second-site mutation in the initiation codon of WAS (WASP) results in expansion of subsets of lymphocytes in an Wiskott-Aldrich syndrome patient. Hum Mutat. 2006;27(4):370–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Humblet-Baron S, Sather B, Anover S, Becker-Herman S, Kasprowicz DJ, Khim S, et al. Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis. J Clin Invest. 2007;117(2):407–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Boztug K, Baumann U, Ballmaier M, Webster D, Sandrock I, Jacobs R, et al. Large granular lymphocyte proliferation and revertant mosaicism: two rare events in a Wiskott-Aldrich syndrome patient. Haematologica. 2007;92(3):e43–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Davis BR, Dicola MJ, Prokopishyn NL, Rosenberg JB, Moratto D, Muul LM, et al. Unprecedented diversity of genotypic revertants in lymphocytes of a patient with Wiskott-Aldrich syndrome. Blood. 2008;111(10):5064–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Boztug K, Germeshausen M, Avedillo Diez I, Gulacsy V, Diestelhorst J, Ballmaier M, et al. Multiple independent second-site mutations in two siblings with somatic mosaicism for Wiskott-Aldrich syndrome. Clin Genet. 2008;74(1):68–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Stewart DM, Candotti F, Nelson DL. The phenomenon of spontaneous genetic reversions in the Wiskott-Aldrich syndrome: a report of the workshop of the ESID Genetics Working Party at the XIIth Meeting of the European Society for Immunodeficiencies (ESID). Budapest, Hungary October 4–7, 2006. J Clin Immunol. 2007;27(6):634–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Lutskiy MI, Park JY, Remold SK, Remold-O'Donnell E. Evolution of highly polymorphic T cell populations in siblings with the Wiskott-Aldrich syndrome. PLoS ONE. 2008;3(10):e3444.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Centre for Stem Cell Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human DiseasesThe University of Texas Health Science Center at HoustonHoustonUSA
  2. 2.Genetics and Molecular Biology Branch, National Human Genome Research InstitutesNational Institutes of HealthBethesdaUSA

Personalised recommendations