Advertisement

Immunologic Research

, Volume 42, Issue 1–3, pp 145–159 | Cite as

X-linked lymphoproliferative disease (XLP): a model of impaired anti-viral, anti-tumor and humoral immune responses

  • Hamid Bassiri
  • W. C. Janice Yeo
  • Jennifer Rothman
  • Gary A. Koretzky
  • Kim E. NicholsEmail author
Article

Abstract

A major focus of our research is to understand the molecular and cellular basis of X-linked lymphoproliferative disease (XLP), a rare and often fatal immunodeficiency caused by mutations in the SH2D1A gene, which encodes the adaptor molecule SAP. Recently, we observed that SAP is essential for the development of natural killer T (NKT) cells, a lymphocyte population that participates in protection against certain tumors, infections, and autoimmune states. In this review, we describe the approaches that we are taking to understand the role of SAP in immune cells, including NKT cells. By using SAP as the focal point of our studies, we hope to identify novel signaling pathways that could be targeted to improve the treatment for patients with XLP as well as more common disorders, such as autoimmunity and cancer.

Keywords

Immunodeficiency X-linked lymphoproliferative disease Epstein Barr virus Signal transduction Adaptor molecule Natural killer T cell 

Notes

Acknowledgments

We thank Mitchell Kronenberg, Pamela Schwartzberg, Juan Carlos Zuniga-Pflucker, Kirin Brewery, and the National Institutes of Health (NIH) Tetramer Facility for providing reagents. We also thank Justina Stadanlick for editorial assistance with this manuscript. This work was funded by grants from the NIH and the XLP Research Trust.

References

  1. 1.
    Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol. 2007;25:337–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen JI. Epstein-Barr virus infection. N Engl J Med. 2000;343:481–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Seemayer TA, Greiner TG, Gross TG, Davis JR, Lanyi A, Sumegi J. X-linked lymphoproliferative disease. In: Goedert JJ, editor. Infectious causes of cancer, targets for intervention. Totowa, NJ: Humana Press; 2000. p. 51–61.CrossRefGoogle Scholar
  5. 5.
    Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev. 2005;203:180–99.PubMedCrossRefGoogle Scholar
  6. 6.
    Brandau O, Schuster V, Weiss M, Hellebrand H, Fink FM, Kreczy A, et al. Epstein-Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum Mol Genet. 1999;8:2407–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Schuster V, Steppberger K, Borte M. Manifestations of X-linked lymphoproliferative disease without prior Epstein-Barr exposure. Blood. 2001;98:1986–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and Epstein-Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96:3118–25.PubMedGoogle Scholar
  9. 9.
    Verhelst H, Van Coster R, Bockaert N, Laureys G, Latour S, Fischer A, et al. Limbic encephalitis as presentation of a SAP deficiency. Neurology. 2007;69:218–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20:129–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395:462–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci USA. 1998;95:13765–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Hare NJ, Ma CS, Alvaro F, Nichols KE, Tangye SG. Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP. Int Immunol. 2006;18:1055–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Morra M, Simarro-Grande M, Martin M, Chen AS, Lanyi A, Silander O, et al. Characterization of SH2D1A missense mutations identified in X-linked lymphoproliferative disease patients. J Biol Chem. 2001;276:36809–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Poy F, Yaffe MB, Sayos J, Saxena K, Morra M, Sumegi J, et al. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol Cell. 1999;4:555–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG, et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity. 2007;27:751–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Graham DB, Bell MP, McCausland MM, Huntoon CJ, van Deursen J, Faubion WA, et al. Ly9 (CD229)-deficient mice exhibit T cell defects yet do not share several phenotypic characteristics associated with SLAM- and SAP-deficient mice. J Immunol. 2006;176:291–300.PubMedGoogle Scholar
  18. 18.
    Howie D, Laroux FS, Morra M, Satoskar AR, Rosas LE, Faubion WA, et al. Cutting edge: the SLAM family receptor Ly108 controls T cell and neutrophil functions. J Immunol. 2005;174:5931–5.PubMedGoogle Scholar
  19. 19.
    Wang N, Satoskar A, Faubion W, Howie D, Okamoto S, Feske S, et al. The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med. 2004;199:1255–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Henning G, Kraft MS, Derfuss T, Pirzer R, de Saint-Basile G, Aversa G, et al. Signaling lymphocytic activation molecule (SLAM) regulates T cellular cytotoxicity. Eur J Immunol. 2001;31:2741–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Mehrle S, Frank S, Schmidt J, Schmidt-Wolf IG, Marten A. SAP and SLAM expression in anti-CD3 activated lymphocytes correlates with cytotoxic activity. Immunol Cell Biol. 2005;83:33–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Mehrle S, Schmidt J, Buchler MW, Watzl C, Marten A. Enhancement of anti-tumor activity in vitro and in vivo by CD150 and SAP. Mol Immunol. 2008;45:796–804.PubMedCrossRefGoogle Scholar
  23. 23.
    Messmer B, Eissmann P, Stark S, Watzl C. CD48 stimulation by 2B4 (CD244)-expressing targets activates human NK cells. J Immunol. 2006;176:4646–50.PubMedGoogle Scholar
  24. 24.
    Stark S, Watzl C. 2B4 (CD244), NTB-A and CRACC (CS1) stimulate cytotoxicity but no proliferation in human NK cells. Int Immunol. 2006;18:241–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Lewis J, Eiben LJ, Nelson DL, Cohen JI, Nichols KE, Ochs HD, et al. Distinct interactions of the X-linked lymphoproliferative syndrome gene product SAP with cytoplasmic domains of members of the CD2 receptor family. Clin Immunol. 2001;100:15–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Sayos J, Nguyen KB, Wu C, Stepp SE, Howie D, Schatzle JD, et al. Potential pathways for regulation of NK and T cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4. Int Immunol. 2000;12:1749–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Latour S, Gish G, Helgason CD, Humphries RK, Pawson T, Veillette A. Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat Immunol. 2001;2:681–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, et al. SAP couples Fyn to SLAM immune receptors. Nat Cell Biol. 2003;5:155–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat Cell Biol. 2003;5:149–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhong MC, Veillette A. Control of T lymphocyte signaling by Ly108, a signaling lymphocytic activation molecule family receptor implicated in autoimmunity. J Biol Chem. 2008;283:19255–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen R, Relouzat F, Roncagalli R, Aoukaty A, Tan R, Latour S, et al. Molecular dissection of 2B4 signaling: implications for signal transduction by SLAM-related receptors. Mol Cell Biol. 2004;24:5144–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Simarro M, Lanyi A, Howie D, Poy F, Bruggeman J, Choi M, et al. SAP increases FynT kinase activity and is required for phosphorylation of SLAM and Ly9. Int Immunol. 2004;16:727–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Thompson AD, Braun BS, Arvand A, Stewart SD, May WA, Chen E, et al. EAT-2 is a novel SH2 domain containing protein that is up regulated by Ewing’s sarcoma EWS/FLI1 fusion gene. Oncogene. 1996;13:2649–58.PubMedGoogle Scholar
  34. 34.
    Calpe S, Erdos E, Liao G, Wang N, Rietdijk S, Simarro M, et al. Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters. Immunogenetics. 2006;58:15–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Veillette A. NK cell regulation by SLAM family receptors and SAP-related adapters. Immunol Rev. 2006;214:22–34.PubMedCrossRefGoogle Scholar
  36. 36.
    Roncagalli R, Taylor JE, Zhang S, Shi X, Chen R, Cruz-Munoz ME, et al. Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nat Immunol. 2005;6:1002–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Tangye SG, Phillips JH, Lanier LL, Nichols KE. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J Immunol. 2000;165:2932–6.PubMedGoogle Scholar
  38. 38.
    Nakajima H, Cella M, Bouchon A, Grierson HL, Lewis J, Duckett CS, et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur J Immunol. 2000;30:3309–18.PubMedCrossRefGoogle Scholar
  39. 39.
    Benoit L, Wang X, Pabst HF, Dutz J, Tan R. Defective NK cell activation in X-linked lymphoproliferative disease. J Immunol. 2000;165:3549–53.PubMedGoogle Scholar
  40. 40.
    Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med. 2000;192:337–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Eissmann P, Beauchamp L, Wooters J, Tilton JC, Long EO, Watzl C. Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood. 2005;105:4722–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Dupre L, Andolfi G, Tangye SG, Clementi R, Locatelli F, Arico M, et al. SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood. 2005;105:4383–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Sharifi R, Sinclair JC, Gilmour KC, Arkwright PD, Kinnon C, Thrasher AJ, et al. SAP mediates specific cytotoxic T cell functions in X-linked lymphoproliferative disease. Blood. 2004;103(10):3821–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Roda-Navarro P, Mittelbrunn M, Ortega M, Howie D, Terhorst C, Sanchez-Madrid F, et al. Dynamic redistribution of the activating 2B4/SAP complex at the cytotoxic NK cell immune synapse. J Immunol. 2004;173:3640–6.PubMedGoogle Scholar
  45. 45.
    Yokoyama S, Staunton D, Fisher R, Amiot M, Fortin JJ, Thorley-Lawson DA. Expression of the Blast-1 activation/adhesion molecule and its identification as CD48. J Immunol. 1991;146:2192–200.PubMedGoogle Scholar
  46. 46.
    Nakajima H, Cella M, Langen H, Friedlein A, Colonna M. Activating interactions in human NK cell recognition: the role of 2B4-CD48. Eur J Immunol. 1999;29:1676–83.PubMedCrossRefGoogle Scholar
  47. 47.
    Tangye SG, Cherwinski H, Lanier LL, Phillips JH. 2B4-mediated activation of human natural killer cells. Mol Immunol. 2000;37:493–501.PubMedCrossRefGoogle Scholar
  48. 48.
    Milone MC, Tsai DE, Hodinka RL, Silverman LB, Malbran A, Wasik MA, et al. Treatment of primary Epstein-Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell-directed therapy. Blood. 2005;105:994–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Balamuth NJ, Nichols KE, Paessler M, Teachey DT. Use of rituximab in conjunction with immunosuppressive chemotherapy as a novel therapy for Epstein Barr virus-associated hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol. 2007;29:569–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Czar MJ, Kersh EN, Mijares LA, Lanier G, Lewis J, Yap G, et al. Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc Natl Acad Sci USA. 2001;98:7449–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu C, Nguyen KB, Pien GC, Wang N, Gullo C, Howie D, et al. SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nat Immunol. 2001;2:410–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Seemayer TA, Gross TG, Egeler RM, Pirruccello SJ, Davis JR, Kelly CM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res. 1995;38:471–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Cannons JL, Yu LJ, Hill B, Mijares LA, Dombroski D, Nichols KE, et al. SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity. 2004;21:693–706.PubMedCrossRefGoogle Scholar
  54. 54.
    Davidson D, Shi X, Zhang S, Wang H, Nemer M, Ono N, et al. Genetic evidence linking SAP, the X-linked lymphoproliferative gene product, to Src-related kinase FynT in T(H)2 cytokine regulation. Immunity. 2004;21:707–17.PubMedCrossRefGoogle Scholar
  55. 55.
    Cannons JL, Yu LJ, Jankovic D, Crotty S, Horai R, Kirby M, et al. SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J Exp Med. 2006;203:1551–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Ma CS, Hare NJ, Nichols KE, Dupre L, Andolfi G, Roncarolo MG, et al. Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. J Clin Invest. 2005;115:1049–59.PubMedGoogle Scholar
  57. 57.
    Crotty S, Kersh EN, Cannons J, Schwartzberg PL, Ahmed R. SAP is required for generating long-term humoral immunity. Nature. 2003;421:282–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Hron JD, Caplan L, Gerth AJ, Schwartzberg PL, Peng SL. SH2D1A regulates T-dependent humoral autoimmunity. J Exp Med. 2004;200:261–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Ma CS, Pittaluga S, Avery DT, Hare NJ, Maric I, Klion AD, et al. Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J Clin Invest. 2006;116:322–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Kamperschroer C, Dibble JP, Meents DL, Schwartzberg PL, Swain SL. SAP is required for Th cell function and for immunity to influenza. J Immunol. 2006;177:5317–27.PubMedGoogle Scholar
  61. 61.
    Morra M, Barrington RA, Abadia-Molina AC, Okamoto S, Julien A, Gullo C, et al. Defective B cell responses in the absence of SH2D1A. Proc Natl Acad Sci USA. 2005;102:4819–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Veillette A, Zhang S, Shi X, Dong Z, Davidson D, Zhong MC. SAP expression in T cells, not in B cells, is required for humoral immunity. Proc Natl Acad Sci USA. 2008;105:1273–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Calpe S, Wang N, Romero X, Berger SB, Lanyi A, Engel P, et al. The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol. 2008;97:177–250.PubMedCrossRefGoogle Scholar
  64. 64.
    Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu Rev Immunol. 2003;21:483–513.PubMedCrossRefGoogle Scholar
  65. 65.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science. 1997;278:1626–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med. 2003;198:1069–76.PubMedCrossRefGoogle Scholar
  67. 67.
    Taniguchi M, Seino K, Nakayama T. The NKT cell system: bridging innate and acquired immunity. Nat Immunol. 2003;4:1164–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J Immunol. 2005;174:3153–7.PubMedGoogle Scholar
  69. 69.
    Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med. 2005;11:340–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Pasquier B, Yin L, Fondaneche MC, Relouzat F, Bloch-Queyrat C, Lambert N, et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med. 2005;201:695–701.PubMedCrossRefGoogle Scholar
  71. 71.
    Gadue P, Morton N, Stein PL. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J Exp Med. 1999;190:1189–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Schmitt TM, Zuniga-Pflucker JC. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity. 2002;17:749–56.PubMedCrossRefGoogle Scholar
  73. 73.
    Nunez-Cruz S, Yeo WC, Rothman J, Ojha P, Bassiri H, Juntilla M, et al. Differential requirement for the SAP-Fyn interaction during NK T cell development and function. J Immunol. 2008;181:2311–20.PubMedGoogle Scholar
  74. 74.
    Bendelac A, Hunziker RD, Lantz O. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J Exp Med. 1996;184:1285–93.PubMedCrossRefGoogle Scholar
  75. 75.
    Gadue P, Yin L, Jain S, Stein PL. Restoration of NK T cell development in fyn-mutant mice by a TCR reveals a requirement for Fyn during early NK T cell ontogeny. J Immunol. 2004;172:6093–100.PubMedGoogle Scholar
  76. 76.
    Oldstone MB. Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Curr Top Microbiol Immunol. 2002;263:83–117.PubMedGoogle Scholar
  77. 77.
    Hobbs JA, Cho S, Roberts TJ, Sriram V, Zhang J, Xu M, et al. Selective loss of natural killer T cells by apoptosis following infection with lymphocytic choriomeningitis virus. J Virol. 2001;75:10746–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Lin Y, Roberts TJ, Wang CR, Cho S, Brutkiewicz RR. Long-term loss of canonical NKT cells following an acute virus infection. Eur J Immunol. 2005;35:879–89.PubMedCrossRefGoogle Scholar
  79. 79.
    Roberts TJ, Lin Y, Spence PM, Van Kaer L, Brutkiewicz RR. CD1d1-dependent control of the magnitude of an acute antiviral immune response. J Immunol. 2004;172:3454–61.PubMedGoogle Scholar
  80. 80.
    Galli G, Nuti S, Tavarini S, Galli-Stampino L, De Lalla C, Casorati G, et al. Innate immune responses support adaptive immunity: NKT cells induce B cell activation. Vaccine. 2003;21(Suppl 2):S48–54.PubMedCrossRefGoogle Scholar
  81. 81.
    Galli G, Nuti S, Tavarini S, Galli-Stampino L, De Lalla C, Casorati G, et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med. 2003;197:1051–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hamid Bassiri
    • 1
  • W. C. Janice Yeo
    • 2
  • Jennifer Rothman
    • 3
  • Gary A. Koretzky
    • 4
    • 5
    • 6
  • Kim E. Nichols
    • 2
    Email author
  1. 1.Infectious Diseases Fellowship Training ProgramChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Division of OncologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Hematology/Oncology Fellowship Training ProgramChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of Pathology & Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Abramson Family Cancer Research InstitutePhiladelphiaUSA
  6. 6.Division of Rheumatology, Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations