Immunologic Research

, Volume 42, Issue 1–3, pp 19–28

FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity

Article

Abstract

Forkhead box protein P3 (FOXP3) contributes to a unique transcriptional signature and serves as a functional marker of CD4+CD25+ natural regulatory T cells. Dysfunction of FOXP3 in human is associated with fatal autoimmune disease known as immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) or X-linked autoimmunity–allergic disregulation syndrome (XLAAD). FOXP3 also can act as a breast tumor suppressor of the v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (neuro/glioblastoma derived oncogene homolog (avian)) (Her2/neu) gene. While the suppressive functions of FOXP3 in maintaining the immune balance between tolerance and autoimmunity are obvious, the underlying molecular mechanism remains almost entirely undefined. Recent studies indicate that FOXP3 may form a dynamic superamolecular complex with a variety of molecular partners including transcription factors and enzymatic proteins to regulate transcription. How the FOXP3 ensemble changes in response to T-cell receptor signals and/or proinflammatory signal remains unclear although work from this laboratory has revealed its complexity. Structural information on FOXP3 complex may offer novel functional insights, as well as facilitate the development of rational means to modulate regulatory T-cell function in various human diseases.

Keywords

Protein structure Regulatory T cell FOXP3 Autoimmunity Cancer 

References

  1. 1.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.PubMedCrossRefGoogle Scholar
  2. 2.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.PubMedCrossRefGoogle Scholar
  3. 3.
    Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest. 2000;106:R75–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27:68–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Li B, Samanta A, Song X, Iacono KT, Brennan P, Chatila TA, et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol. 2007;19:825–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang B, Lin D, Li C, Tucker P. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem. 2003;278:24259–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006;126:375–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA. 2005;102:5138–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007;446:685–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee SM, Gao B, Fang D. FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP–1. Blood. 2008;111:3599–606.PubMedCrossRefGoogle Scholar
  12. 12.
    Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R, et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA. 2007;104:4571–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Li B, Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S, et al. FOXP3 ensembles in T-cell regulation. Immunol Rev. 2006;212:99–113.PubMedCrossRefGoogle Scholar
  14. 14.
    Ebert LM, Tan BS, Browning J, Svobodova S, Russell SE, Kirkpatrick N, et al. The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res. 2008;68:3001–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T, et al. Foxp3 expression in human cancer cells. J Transl Med. 2008;6:19.Google Scholar
  16. 16.
    Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W, et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell. 2007;129:1275–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L, et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest. 2007;117:3765–73.PubMedGoogle Scholar
  18. 18.
    Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grussel S, Sipos B, et al. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res. 2007;67:8344–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Chae WJ, Henegariu O, Lee SK, Bothwell AL. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc Natl Acad Sci USA. 2006;103:9631–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD, et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol. 2006;177:3133–42.PubMedGoogle Scholar
  21. 21.
    Li B, Greene MI. FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle. 2007;6:1432–6.PubMedGoogle Scholar
  22. 22.
    Allan SE, Passerini L, Bacchetta R, Crellin N, Dai M, Orban PC, et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest. 2005;115:3276–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Ziegler SF. FOXP3: of mice and men. Annu Rev Immunol. 2006;24:209–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Du J, Huang C, Zhou B, Ziegler SF. Isoform-specific inhibition of ROR{alpha}-mediated transcriptional activation by human FOXP3. J Immunol. 2008;180:4785–92.PubMedGoogle Scholar
  25. 25.
    Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453:236–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure. 2006;14:159–66.PubMedCrossRefGoogle Scholar
  27. 27.
    Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol. 2002;250:1–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Jin C, Marsden I, Chen X, Liao X, Dynamic DNA. contacts observed in the NMR structure of winged helix protein–DNA complex. J Mol Biol. 1999;289:683–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Pierrou S, Hellqvist M, Samuelsson L, Enerback S, Carlsson P. Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. Embo J. 1994;13:5002–12.PubMedGoogle Scholar
  30. 30.
    Heissmeyer V, Macian F, Im SH, Varma R, Feske S, Venuprasad K, et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol. 2004;5:255–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Heissmeyer V, Rao A. E3 ligases in T cell anergy–turning immune responses into tolerance. Sci STKE. 2004;241:pe29.Google Scholar
  32. 32.
    Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002;109:719–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Warren AJ, Bravo J, Williams RL, Rabbitts TH. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. Embo J. 2000;19:3004–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Bravo J, Li Z, Speck NA, Warren AJ. The leukemia-associated AML1 (Runx1)–CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol. 2001;8:371–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Backstrom S, Wolf-Watz M, Grundstrom C, Hard T, Grundstrom T, Sauer UH. The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J Mol Biol. 2002;322:259–72.Google Scholar
  37. 37.
    Bartfeld D, Shimon L, Couture GC, Rabinovich D, Frolow F, Levanon D, et al. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure. 2002;10:1395–407.PubMedCrossRefGoogle Scholar
  38. 38.
    Li D, Sinha KK, Hay MA, Rinaldi CR, Saunthararajah Y, Nucifora G. RUNX1-RUNX1 homodimerization modulates RUNX1 activity and function. J Biol Chem. 2007;282:13542–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res. 2008;23:361–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, et al. Foxp3 inhibits RORgamma t-mediated IL–17A mRNA transcription through direct interaction with RORgamma t. J Biol Chem. 2008;283:17003–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28:29–39.PubMedCrossRefGoogle Scholar
  44. 44.
    Sapountzi V, Logan IR, Robson CN. Cellular functions of TIP60. Int J Biochem Cell Biol. 2006;38:1496–509.PubMedCrossRefGoogle Scholar
  45. 45.
    Squatrito M, Gorrini C, Amati B. Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol. 2006;16:433–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature. 2007;448:1063–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Xiao H, Chung J, Kao HY, Yang YC. Tip60 is a co-repressor for STAT3. J Biol Chem. 2003;278:11197–204.PubMedCrossRefGoogle Scholar
  48. 48.
    Kao HY, Downes M, Ordentlich P, Evans RM. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000;14:55–66.PubMedGoogle Scholar
  49. 49.
    Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev. 2005;21:416–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004;32:959–76.PubMedCrossRefGoogle Scholar
  51. 51.
    Kao HY, Verdel A, Tsai CC, Simon C, Juguilon H, Khochbin S. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem. 2001;276:47496–507.PubMedCrossRefGoogle Scholar
  52. 52.
    Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem. 2001;276:35826–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Verdin E, Dequiedt F, Kasler HG, Class II. histone deacetylases: versatile regulators. Trends Genet. 2003;19:286–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, et al. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem. 2008;283:11355–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Riester D, Hildmann C, Grunewald S, Beckers T, Schwienhorst A. Factors affecting the substrate specificity of histone deacetylases. Biochem Biophys Res Commun. 2007;357:439–45.PubMedCrossRefGoogle Scholar
  56. 56.
    Clemente S, Franco L, Lopez-Rodas G. Distinct site specificity of two pea histone deacetylase complexes. Biochemistry. 2001;40:10671–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Col E, Caron C, Chable-Bessia C, Legube G, Gazzeri S, Komatsu Y, et al. HIV–1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses. Embo J. 2005;24:2634–45.PubMedCrossRefGoogle Scholar
  58. 58.
    Li B, Saouaf SJ, Samanta A, Shen Y, Hancock WW, Greene MI. Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Curr Opin Immunol. 2007;19:583–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations