Immunologic Research

, 42:3 | Cite as

The IκB kinase complex: master regulator of NF-κB signaling

  • Laura A. Solt
  • Michael J. MayEmail author


The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates the expression of a wide range of genes critical for immune and inflammatory responses, cell survival, immune development, and cell proliferation. Dysregulated NF-κB activity occurs in a number of chronic inflammatory diseases and certain types of cancers making NF-κB signaling an attractive target for the development of anti-inflammatory and anti-cancer drugs. A pivotal regulator of all inducible NF-κB signaling pathways is the IκB kinase (IKK) complex that consists of two kinases (IKKα and IKKβ) and a regulatory subunit named NF-κB essential modulator (NEMO). Genetic analysis of the IKK complex has identified two separate pathways named the classical and non-canonical mechanisms that are dependent on either NEMO and IKKβ (classical) or IKKα alone (non-canonical). To better understand the mechanisms that regulate IKK complex activity and to address the differential functions of IKKα and IKKβ we have molecularly dissected the IKKs. We describe here how these studies have identified a unique inhibitor of pro-inflammatory NF-κB signaling, an unforeseen role for IKKα in the classical NF-κB pathway, and a novel functional domain in IKKβ that is not present in IKKα.


I kappa B kinase Nuclear factor-kappa B NF-κB essential modulator NEMO binding domain Ubiquitin-like domain Signal transduction 



Cell penetrating peptide


IκB kinase


Inhibitor of NF-κB


NEMO binding domain


NF-κB essential modulator


Nuclear factor-kappa B


NF-κB-inducing kinase


Ubiquitin like domain



Work in the May laboratory is supported by the National Institutes of Health (NIH/NHLBI: 1RO1HL080612) and the WW Smith Charitable Trust (H0703). Laura Solt is a graduate student in the Immunology Graduate Group and is supported by NIH/NIAID 5T32AI055428.


  1. 1.
    Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25:6680–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene. 2006;25:6758–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Courtois G, Gilmore TD. Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene. 2006;25:6831–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Scheidereit C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene. 2006;25:6685–705.PubMedCrossRefGoogle Scholar
  7. 7.
    Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE.. 2006;357:re13.CrossRefGoogle Scholar
  8. 8.
    DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997;388:548–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, et al. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 1997;278:860–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Rothwarf DM, Zandi E, Natoli G, Karin M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature. 1998;395:297–300.PubMedCrossRefGoogle Scholar
  11. 11.
    Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science. 1997;278:866–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 1997;91:243–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Agou F, Courtois G, Chiaravalli J, Baleux F, Coic YM, Traincard F, et al. Inhibition of NF-kappa B activation by peptides targeting NF-kappa B essential modulator (nemo) oligomerization. J Biol Chem. 2004;279:54248–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem. 2000;275:27823–31.PubMedGoogle Scholar
  15. 15.
    Makris C, Roberts JL, Karin M. The carboxyl-terminal region of IkappaB kinase gamma (IKKgamma) is required for full IKK activation. Mol Cell Biol. 2002;22:6573–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Marienfeld RB, Palkowitsch L, Ghosh S. Dimerization of the I kappa B kinase-binding domain of NEMO is required for tumor necrosis factor alpha-induced NF-kappa B activity. Mol Cell Biol. 2006;26:9209–19.PubMedCrossRefGoogle Scholar
  17. 17.
    Palkowitsch L, Leidner J, Ghosh S, Marienfeld RB. Phosphorylation of serine 68 in the IkappaB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-alpha-induced NF-kappaB activity. J Biol Chem. 2008;283:76–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Poyet JL, Srinivasula SM, Lin JH, Fernandes-Alnemri T, Yamaoka S, Tsichlis PN, et al. Activation of the Ikappa B kinases by RIP via IKKgamma/NEMO-mediated oligomerization. J Biol Chem. 2000;275:37966–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Schomer-Miller B, Higashimoto T, Lee YK, Zandi E. Regulation of IkappaB kinase (IKK) complex by IKKgamma-dependent phosphorylation of the T-loop and C terminus of IKKbeta. J Biol Chem. 2006;281:15268–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Tegethoff S, Behlke J, Scheidereit C. Tetrameric oligomerization of IkappaB kinase gamma (IKKgamma) is obligatory for IKK complex activity and NF-kappaB activation. Mol Cell Biol. 2003;23:2029–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell. 1998;93:1231–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Fontan E, Traincard F, Levy SG, Yamaoka S, Veron M, Agou F. NEMO oligomerization in the dynamic assembly of the IkappaB kinase core complex. FEBS J. 2007;274:2540–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Khoshnan A, Kempiak SJ, Bennett BL, Bae D, Xu W, Manning AM, et al. Primary human CD4 + T cells contain heterogeneous I kappa B kinase complexes: role in activation of the IL-2 promoter. J Immunol. 1999;163:5444–52.PubMedGoogle Scholar
  24. 24.
    Mercurio F, Murray BW, Shevchenko A, Bennett BL, Young DB, Li JW, et al. IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol Cell Biol. 1999;19:1526–38.PubMedGoogle Scholar
  25. 25.
    Drew D, Shimada E, Huynh K, Bergqvist S, Talwar R, Karin M, et al. Inhibitor kappaB kinase beta binding by inhibitor kappaB kinase gamma. Biochemistry. 2007;46:12482–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Tang ED, Inohara N, Wang CY, Nunez G, Guan KL. Roles for homotypic interactions and transautophosphorylation in IkappaB kinase beta IKKbeta) activation [corrected]. J Biol Chem. 2003;278:38566–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Makris C, Godfrey VL, Krahn-Senftleben G, Takahashi T, Roberts JL, Schwarz T, et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell. 2000;5:969–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Rudolph D, Yeh WC, Wakeham A, Rudolph B, Nallainathan D, Potter J, et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 2000;14:854–62.PubMedGoogle Scholar
  29. 29.
    Rushe M, Silvian L, Bixler S, Chen LL, Cheung A, Bowes S, et al. Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure. 2008;16:798–808.PubMedCrossRefGoogle Scholar
  30. 30.
    Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature. 2003;424:797–801.PubMedCrossRefGoogle Scholar
  31. 31.
    Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature. 2003;424:801–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang SQ, Kovalenko A, Cantarella G, Wallach D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity. 2000;12:301–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Fu DX, Kuo YL, Liu BY, Jeang KT, Giam CZ. Human T-lymphotropic virus type I tax activates I-kappa B kinase by inhibiting I-kappa B kinase-associated serine/threonine protein phosphatase 2A. J Biol Chem. 2003;278:1487–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Hong S, Wang LC, Gao X, Kuo YL, Liu B, Merling R, et al. Heptad repeats regulate protein phosphatase 2a recruitment to I-kappaB kinase gamma/NF-kappaB essential modulator and are targeted by human T-lymphotropic virus type 1 tax. J Biol Chem. 2007;282:12119–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Prajapati S, Verma U, Yamamoto Y, Kwak YT, Gaynor RB. Protein phosphatase 2Cbeta association with the IkappaB kinase complex is involved in regulating NF-kappaB activity. J Biol Chem. 2004;279:1739–46.PubMedCrossRefGoogle Scholar
  36. 36.
    May MJ, Marienfeld RB, Ghosh S. Characterization of the Ikappa B-kinase NEMO binding domain. J Biol Chem. 2002;277:45992–6000.PubMedCrossRefGoogle Scholar
  37. 37.
    Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science. 1999;284:309–13.PubMedCrossRefGoogle Scholar
  38. 38.
    May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science. 2000;289:1550–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Strnad J, McDonnell PA, Riexinger DJ, Mapelli C, Cheng L, Gray H, et al. NEMO binding domain of IKK-2 encompasses amino acids 735–745. J Mol Recognit. 2006;19:227–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Correa RG, Matsui T, Tergaonkar V, Rodriguez-Esteban C, Izpisua-Belmonte JC, Verma IM. Zebrafish IkappaB kinase 1 negatively regulates NF-kappaB activity. Curr Biol. 2005;15:1291–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Escoubas JM, Briant L, Montagnani C, Hez S, Devaux C, Roch P. Oyster IKK-like protein shares structural and functional properties with its mammalian homologues. FEBS Lett. 1999;453:293–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Xiong X, Feng Q, Chen L, Xie L, Zhang R. Cloning and characterization of an IKK homologue from pearl oyster, Pinctada fucata. Dev Comp Immunol. 2008;32:15–25.PubMedGoogle Scholar
  43. 43.
    Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998;280:1–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Lo YC, Maddineni U, Chung JY, Rich RL, Myszka DG, Wu H. High-affinity interaction between IKKbeta and NEMO. Biochemistry. 2008;47:3109–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Deshayes S, Morris MC, Divita G, Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci. 2005;62:1839–49.PubMedCrossRefGoogle Scholar
  46. 46.
    Tilstra J, Rehman KK, Hennon T, Plevy SE, Clemens P, Robbins PD. Protein transduction: identification, characterization and optimization. Biochem Soc Trans. 2007;35:811–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Wadia JS, Dowdy SF. Protein transduction technology. Curr Opin Biotechnol. 2002;13:52–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. 2005;57:529–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem. 1996;271:18188–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Choi M, Rolle S, Wellner M, Cardoso MC, Scheidereit C, Luft FC, et al. Inhibition of NF-kappaB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood. 2003;102:2259–67.PubMedCrossRefGoogle Scholar
  51. 51.
    Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y. Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. J Orthop Res. 2006;24:1358–65.PubMedCrossRefGoogle Scholar
  52. 52.
    Dai S, Hirayama T, Abbas S, Abu-Amer Y. The I{kappa}B Kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem. 2004;279:37219–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P, et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol. 2005;145:1093–102.PubMedCrossRefGoogle Scholar
  54. 54.
    Rehman KK, Bertera S, Bottino R, Balamurugan AN, Mai JC, Mi Z, et al. Protection of islets by in situ peptide-mediated transduction of the Ikappa B kinase inhibitor Nemo-binding domain peptide. J Biol Chem. 2003;278:9862–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Salanova B, Choi M, Rolle S, Wellner M, Scheidereit C, Luft FC. The effect of fever-like temperatures on neutrophil signaling. FASEB J. 2005;19:816–8.PubMedGoogle Scholar
  56. 56.
    Jimi E, Aoki K, Saito H, D’Acquisto F, May MJ, Nakamura I, et al. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med. 2004;10:617–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Orange JS, May MJ. Cell penetrating peptide inhibitors of nuclear factor-kappa B. Cell Mol Life Sci. 2008 (accepted).Google Scholar
  58. 58.
    Dave SH, Tilstra JS, Matsuoka K, Li F, Karrasch T, Uno JK, et al. Amelioration of chronic murine colitis by peptide-mediated transduction of the I{kappa}B Kinase inhibitor NEMO binding domain peptide. J Immunol. 2007;179:7852–9.PubMedGoogle Scholar
  59. 59.
    De Plaen IG, Liu SX, Tian R, Neequaye I, May MJ, Han XB, et al. Inhibition of nuclear factor-kappaB ameliorates bowel injury and prolongs survival in a neonatal rat model of necrotizing enterocolitis. Pediatr Res. 2007;61:716–21.PubMedGoogle Scholar
  60. 60.
    Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, et al. Cutting edge: the I{kappa}B Kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J Immunol. 2007;179:2681–5.PubMedGoogle Scholar
  61. 61.
    Nadjar A, Bluthe RM, May MJ, Dantzer R, Parnet P. Inactivation of the cerebral NFkappaB pathway inhibits interleukin-1beta-induced sickness behavior and c-Fos expression in various brain nuclei. Neuropsychopharmacology. 2005;30:1492–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Nadjar A, Tridon V, May MJ, Ghosh S, Dantzer R, Amedee T, et al. NFkappaB activates in vivo the synthesis of inducible Cox-2 in the brain. J Cereb Blood Flow Metab. 2005;25:1047–59.PubMedCrossRefGoogle Scholar
  63. 63.
    Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A. Strong neuroprotection by inhibition of NF-{kappa}B after neonatal hypoxia-ischemia involves apoptotic mechanisms but is independent of cytokines. Stroke. 2008;39:2127–37.Google Scholar
  64. 64.
    Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A. A dual role of the NF-{kappa}B pathway in neonatal hypoxic-ischemic brain damage. Stroke. 2008 (in press).Google Scholar
  65. 65.
    Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, et al. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 2007;104:18754–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Ankermann T, Reisner A, Wiemann T, Krams M, Kohler H, Krause MF. Topical inhibition of nuclear factor-kappaB enhances reduction in lung edema by surfactant in a piglet model of airway lavage. Crit Care Med. 2005;33:1384–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Mora AL, Lavoy J, McKean M, Stecenko A, Brigham KL, Parker R, et al. Prevention of NF-{kappa}B activation in vivo by a cell permeable NF-{kappa}B inhibitor peptide. Am J Physiol Lung Cell Mol Physiol. 2005;289:L536–44.PubMedCrossRefGoogle Scholar
  68. 68.
    von Bismarck P, Klemm K, Wistadt CF, Winoto-Morbach S, Uhlig U, Schutze S, et al. Surfactant “fortification” by topical inhibition of nuclear factor-kappaB activity in a newborn piglet lavage model. Crit Care Med. 2007;35:2309–18.CrossRefGoogle Scholar
  69. 69.
    Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25:280–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science. 1999;284:321–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med. 1999;189:1839–45.PubMedCrossRefGoogle Scholar
  72. 72.
    Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature. 1995;376:167–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 2001;293:1495–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol. 2002;3:958–65.PubMedCrossRefGoogle Scholar
  75. 75.
    Coope HJ, Atkinson PG, Huhse B, Belich M, Janzen J, Holman MJ, et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J. 2002;21:5375–85.PubMedCrossRefGoogle Scholar
  76. 76.
    Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity. 2002;17:525–35.PubMedCrossRefGoogle Scholar
  77. 77.
    Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell. 2001;7:401–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kB inducing kinase by TRAF3-induced degradation. J Biol Chem. 2004;279:26243.PubMedCrossRefGoogle Scholar
  79. 79.
    Hu Y, Baud V, Oga T, Kim KI, Yoshida K, Karin M. IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature. 2001;410:710–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Li X, Massa PE, Hanidu A, Peet GW, Aro P, Savitt A, et al. IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program. J Biol Chem. 2002;277:45129–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Massa PE, Li X, Hanidu A, Siamas J, Pariali M, Pareja J, et al. Gene expression profiling in conjunction with physiological rescues of IKKalpha-null cells with wild type or mutant IKKalpha reveals distinct classes of IKKalpha/NF-kappaB-dependent genes. J Biol Chem. 2005;280:14057–69.PubMedCrossRefGoogle Scholar
  82. 82.
    Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107:763–75.PubMedCrossRefGoogle Scholar
  83. 83.
    Solt LA, Madge LA, Orange JS, May MJ. Interleukin-1-induced NF-kappaB activation is NEMO-dependent but does not require IKKbeta. J Biol Chem. 2007;282:8724–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Huang TT, Feinberg SL, Suryanarayanan S, Miyamoto S. The zinc finger domain of NEMO is selectively required for NF-kappa B activation by UV radiation and topoisomerase inhibitors. Mol Cell Biol. 2002;22:5813–25.PubMedCrossRefGoogle Scholar
  85. 85.
    Sil AK, Maeda S, Sano Y, Roop DR, Karin M. IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature. 2004;428:660–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature. 2003;423:659–63.PubMedCrossRefGoogle Scholar
  87. 87.
    Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature. 2003;423:655–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Hoberg JE, Popko AE, Ramsey CS, Mayo MW. IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol. 2006;26:457–71.PubMedCrossRefGoogle Scholar
  89. 89.
    Lawrence T, Bebien M, Liu GY, Nizet V, Karin M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature. 2005;434:1138–43.PubMedCrossRefGoogle Scholar
  90. 90.
    May MJ, Madge LA. Caspase inhibition sensitizes inhibitor of NF-kappaB kinase beta-deficient fibroblasts to caspase-independent cell death via the generation of reactive oxygen species. J Biol Chem. 2007;282:16105–16.PubMedCrossRefGoogle Scholar
  91. 91.
    Kwak YT, Guo J, Shen J, Gaynor RB. Analysis of domains in the IKKalpha and IKKbeta proteins that regulate their kinase activity. J Biol Chem. 2000;275:14752–9.PubMedCrossRefGoogle Scholar
  92. 92.
    May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S. A novel ubiquitin-like domain in IkappaB kinase beta is required for functional activity of the kinase. J Biol Chem. 2004;279:45528–39.PubMedCrossRefGoogle Scholar
  93. 93.
    Hartmann-Petersen R, Gordon C, Integral UBL. Domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol. 2004;15:247–59.PubMedCrossRefGoogle Scholar
  94. 94.
    Ikeda F, Hecker CM, Rozenknop A, Nordmeier RD, Rogov V, Hofmann K, et al. Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes. EMBO J. 2007;26:3451–62.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Animal BiologyUniversity of Pennsylvania School of Veterinary MedicinePhiladelphiaUSA
  2. 2.Mari Lowe Center for Comparative OncologyUniversity of Pennsylvania School of Veterinary MedicinePhiladelphiaUSA

Personalised recommendations