Immunologic Research

, Volume 41, Issue 3, pp 203–216

Anti-Sm B cell tolerance and tolerance loss in systemic lupus erythematosus



Autoimmunity is a serious health problem and understanding the maintenance and loss of tolerance to self-antigens are key issues in developing new therapeutic strategies to treat these diseases. Despite considerable progress toward understanding B cell tolerance and tolerance loss, much remains unknown, particularly regarding B cells specific for antigens targeted in disease. Our interest in systemic lupus erythematosus (SLE), a B cell-mediated autoimmune disease characterized by the production of autoantibodies to numerous nuclear antigens, is focused on understanding B cell tolerance and tolerance loss to the SLE-specific autoantigen Sm in mice and humans. Our work aims to provide the cellular and molecular underpinnings for the development of rational therapies to target autoreactive B cells in human SLE.


Systemic lupus erythematosus B-lymphocytes Tolerance Sm Dendritic cells Anergy 


  1. 1.
    Hahn BH. Antibodies to DNA. N Engl J Med. 1998;338(19):1359–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Su W, Madaio MP. Recent advances in the pathogenesis of lupus nephritis: autoantibodies and B cells. Semin Nephrol. 2003;23(6):564–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Ciruelo E, de la Cruz J, Lopez I, Gomez-Reino JJ. Cumulative rate of relapse of lupus nephritis after successful treatment with cyclophosphamide. Arthritis Rheum. 1996;39(12):2028–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Illei GG, Takada K, Parkin D, Austin HA, Crane M, Yarboro CH, et al. Renal flares are common in patients with severe proliferative lupus nephritis treated with pulse immunosuppressive therapy: long-term followup of a cohort of 145 patients participating in randomized controlled studies. Arthritis Rheum. 2002;46(4):995–1002.PubMedCrossRefGoogle Scholar
  5. 5.
    Nachman PH, Hogan SL, Jennette JC, Falk RJ. Treatment response and relapse in antineutrophil cytoplasmic autoantibody-associated microscopic polyangiitis and glomerulonephritis. J Am Soc Nephrol. 1996;7(1):33–9.PubMedGoogle Scholar
  6. 6.
    Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 2008;40(2):204–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9):900–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity. 2007;40(8):560–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol. 2004;22:431–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Hart SP, Smith JR, Dransfield I. Phagocytosis of opsonized apoptotic cells: roles for ‘old-fashioned’ receptors for antibody and complement. Clin Exp Immunol. 2004;135(2):181–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179(4):1317–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Rosen A, Casciola-Rosen L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 1999;6(1):6–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Qian Y, Wang H, Clarke SH. Impaired clearance of apoptotic cells induces the activation of autoreactive anti-Sm marginal zone and B-1 B cells. J Immunol. 2004;172(1):625–35.PubMedGoogle Scholar
  14. 14.
    Mevorach D, Zhou JL, Song X, Elkon KB. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med. 1998;188(2):387–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Yong J, Wan L, Dreyfuss G. Why do cells need an assembly machine for RNA-protein complexes? Trends Cell Biol. 2004;14(5):226–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Tan EM. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol. 1989;44:93–151.PubMedCrossRefGoogle Scholar
  17. 17.
    Santulli-Marotto S, Retter MW, Gee R, Mamula MJ, Clarke SH. Autoreactive B cell regulation: peripheral induction of developmental arrest by lupus-associated autoantigens. Immunity. 1998;8(2):209–19.PubMedCrossRefGoogle Scholar
  18. 18.
    Bloom DD, Davignon JL, Retter MW, Shlomchik MJ, Pisetsky DS, Cohen PL, et al. V region gene analysis of anti-Sm hybridomas from MRL/Mp-lpr/lpr mice. J Immunol. 1993;150(4):1591–610.PubMedGoogle Scholar
  19. 19.
    Borrero M, Clarke SH. Low-affinity anti-Smith antigen B cells are regulated by anergy as opposed to developmental arrest or differentiation to B-1. J Immunol. 2002;168(1):13–21.PubMedGoogle Scholar
  20. 20.
    Santulli-Marotto S, Qian Y, Ferguson S, Clarke SH. Anti-Sm B cell differentiation in Ig transgenic MRL/Mp-lpr/lpr mice: altered differentiation and an accelerated response. J Immunol. 2001;166(8):5292–9.PubMedGoogle Scholar
  21. 21.
    Qian Y, Conway KL, Lu X, Seitz HM, Matsushima GK, Clarke SH. Autoreactive MZ and B-1 B-cell activation by Faslpr is coincident with an increased frequency of apoptotic lymphocytes and a defect in macrophage clearance. Blood. 2006;108(3):974–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Goodnow CC, Cyster JG, Hartley SB, Bell SE, Cooke MP, Healy JI, et al. Self-tolerance checkpoints in B lymphocyte development. Adv Immunol. 1995;59:279–368.PubMedCrossRefGoogle Scholar
  23. 23.
    Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med. 1993;177(4):999–1008.PubMedCrossRefGoogle Scholar
  24. 24.
    Nemazee D, Weigert M. Revising B cell receptors. J Exp Med. 2000;191(11):1813–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Mandik-Nayak L, Bui A, Noorchashm H, Eaton A, Erikson J. Regulation of anti-double-stranded DNA B cells in nonautoimmune mice: localization to the T-B interface of the splenic follicle. J Exp Med. 1997;186(8):1257–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Cyster JG, Hartley SB, Goodnow CC. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature. 1994;371(6496):389–95.PubMedCrossRefGoogle Scholar
  27. 27.
    Culton DA, O’Conner BP, Conway KL, Diz R, Rutan J, Vilen BJ, et al. Early preplasma cells define a tolerance checkpoint for autoreactive B cells. J Immunol. 2006;176(2):790–802.PubMedGoogle Scholar
  28. 28.
    William J, Euler C, Primarolo N, Shlomchik MJ. B cell tolerance checkpoints that restrict pathways of antigen-driven differentiation. J Immunol. 2006;176(4):2142–51.PubMedGoogle Scholar
  29. 29.
    Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, et al. Identification of anergic B cells within a wild-type repertoire. Immunity. 2006;25(6):953–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Kilmon MA, Rutan JA, Clarke SH, Vilen BJ. Low-affinity, Smith antigen-specific B cells are tolerized by dendritic cells and macrophages. J Immunol. 2005;175(1):37–41.PubMedGoogle Scholar
  31. 31.
    Qian Y, Santiago C, Borrero M, Tedder TF, Clarke SH. Lupus-specific antiribonucleoprotein B cell tolerance in nonautoimmune mice is maintained by differentiation to B-1 and governed by B cell receptor signaling thresholds. J Immunol. 2001;166(4):2412–9.PubMedGoogle Scholar
  32. 32.
    Kilmon MA, Wagner NJ, Garland AL, Lin L, Aviszus K, Wysocki LJ, et al. Macrophages prevent the differentiation of autoreactive B cells by secreting CD40 ligand and IL-6. Blood. 2007;110:1595–602.PubMedCrossRefGoogle Scholar
  33. 33.
    Lopes-Carvalho T, Kearney JF. Development and selection of marginal zone B cells. Immunol Rev. 2004;197:192–205.PubMedCrossRefGoogle Scholar
  34. 34.
    Lopes-Carvalho T, Kearney JF. Marginal zone B cell physiology and disease. Curr Dir Autoimmun. 2005;8:91–123.PubMedCrossRefGoogle Scholar
  35. 35.
    Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol. 1997;27(9):2366–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol. 2005;35(1):252–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Lesley R, Xu Y, Kalled SL, Hess DM, Schwab SR, Shu HB, Cyster JG. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity. 2004;20(4):441–53.PubMedCrossRefGoogle Scholar
  38. 38.
    Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature. 2001;411(6834):207–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356(6367):314–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Theofilopoulos AN, Dixon FJ. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390.PubMedCrossRefGoogle Scholar
  41. 41.
    Gerloni M, Lo D, Zanetti M. DNA immunization in relB-deficient mice discloses a role for dendritic cells in IgM→IgG1 switch in vivo. Eur J Immunol. 1998;28(2):516–24.PubMedCrossRefGoogle Scholar
  42. 42.
    MacPherson G, Kushnir N, Wykes M. Dendritic cells, B cells and the regulation of antibody synthesis. Immunol Rev. 1999;172:325–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Qi H, Egen JG, Huang AY, Germain RN. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science. 2006;312(5780):1672–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Balazs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 2002;17(3):341–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL, et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 2002;46(1):191–201.PubMedCrossRefGoogle Scholar
  46. 46.
    Lu Q, Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science. 2001;293(5528):306–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Guo Z, Zhang M, An H, Chen W, Liu S, Guo J, et al. Fas ligation induces IL-1beta-dependent maturation and IL-1beta-independent survival of dendritic cells: different roles of ERK and NF-kappaB signaling pathways. Blood. 2003;102(13):4441–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Shlomchik MJ, Aucoin AH, Pisetsky DS, Weigert MG. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci USA. 1987;84(24):9150–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG. The role of clonal selection and somatic mutation in autoimmunity. Nature. 1987;328(6133):805–11.PubMedCrossRefGoogle Scholar
  50. 50.
    Blaese RM, Grayson J, Steinberg AD. Increased immunoglobulin-secreting cells in the blood of patients with active systemic lupus erythematosus. Am J Med. 1980;69(3):345–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Budman DR, Merchant EB, Steinberg AD, Doft B, Gershwin ME, Lizzio E, et al. Increased spontaneous activity of antibody-forming cells in the peripheral blood of patients with active SLE. Arthritis Rheum. 1977;20(3):829–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Suzuki H, Sakurami T, Imura H. Relationship between reduced B cell susceptibility to IgM antibodies and reduced IgD-bearing B cells in patients with systemic lupus erythematosus. Arthritis Rheum. 1982;25(12):1451–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Liossis SN, Kovacs B, Dennis G, Kammer GM, Tsokos GC. B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest. 1996;98(11):2549–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Tsokos GC, Wong HK, Enyedy EJ, Nambiar MP. Immune cell signaling in lupus. Curr Opin Rheumatol. 2000;12(5):355–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Bijl M, Horst G, Limburg PC, Kallenberg CG. Expression of costimulatory molecules on peripheral blood lymphocytes of patients with systemic lupus erythematosus. Ann Rheum Dis. 2001;60(5):523–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Folzenlogen D, Hofer MF, Leung DY, Freed JH, Newell MK. Analysis of CD80 and CD86 expression on peripheral blood B lymphocytes reveals increased expression of CD86 in lupus patients. Clin Immunol Immunopathol. 1997;83(3):199–204.PubMedCrossRefGoogle Scholar
  57. 57.
    Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol. 2000;165(10):5970–9.PubMedGoogle Scholar
  58. 58.
    Jacobi AM, Odendahl M, Reiter K, Bruns A, Burmester GR, Radbruch A, et al. Correlation between circulating CD27 high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2003;48(5):1332–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Smith HR, Olson RR. CD5+ B lymphocytes in systemic lupus erythematosus and rheumatoid arthritis. J Rheumatol. 1990;17(6):833–5.PubMedGoogle Scholar
  60. 60.
    Culton DA, Nicholas MW, Bunch DO, Zhen QL, Kepler TB, Dooley MA, et al. Similar CD19 dysregulation in two autoantibody-associated autoimmune diseases suggests a shared mechanism of B-cell tolerance loss. J Clin Immunol. 2007;27(1):53–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Falk RJ, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med. 1988;318(25):1651–7.PubMedGoogle Scholar
  62. 62.
    Jennette JC, Hoidal JR, Falk RJ. Specificity of anti-neutrophil cytoplasmic autoantibodies for proteinase 3. Blood. 1990;75(11):2263–4.PubMedGoogle Scholar
  63. 63.
    Jennette JC, Falk RJ. Small-vessel vasculitis. N Engl J Med. 1997;337(21):1512–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Nicholas MW, Dooley MA, Hogan SL, Anolik J, Looney J, Sanz I, et al. A novel subset of memory B cells is enriched in autoreactivity and correlates with adverse outcomes in SLE. Clin Immunol. 2008;126(2):189–201.PubMedCrossRefGoogle Scholar
  65. 65.
    Narumi S, Takeuchi T, Kobayashi Y, Konishi K. Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus. Cytokine. 2000;12(10):1561–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Okamoto H, Katsumata Y, Nishimura K, Kamatani N. Interferon-inducible protein 10/CXCL10 is increased in the cerebrospinal fluid of patients with central nervous system lupus. Arthritis Rheum. 2004;50(11):3731–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations