Advertisement

Immunologic Research

, Volume 41, Issue 3, pp 165–174 | Cite as

Statins’ immunomodulatory potential against Th17 cell-mediated autoimmune response

  • Xin Zhang
  • Silva Markovic-Plese
Article

Abstract

Statins’ recently discovered anti-inflammatory effects place them at the forefront of the new therapies for chronic inflammatory and autoimmune diseases. Our recent study demonstrated that simvastatin exerts an independent immunomodulatory effect on the human monocytes and CD4+ cells. In addition to the statin-mediated effect on the monocyte cytokine production, which regulates Th17 cell differentiation, simvastatin directly inhibits IL-17 production in CD4+ cells, which may collectively inhibit the autoimmune response in multiple sclerosis (MS), a central nervous system (CNS) inflammatory demyelinating disease.

Keywords

Statins Autoimmune response Th17 cells Anti-inflammatory and neuroprotective effect Multiple sclerosis 

References

  1. 1.
    Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.PubMedCrossRefGoogle Scholar
  2. 2.
    Hafler DA. Multiple sclerosis. J Clin Invest. 2004;113:788–94.PubMedGoogle Scholar
  3. 3.
    Muraro PA, Wandinger KP, Bielekova B, Gran B, Marques A, Utz U, et al. Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders. Brain. 2003;126:20–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Hickey WF. Basic principles of immunological surveillance of the normal central nervous system. Glia. 2001;36:118–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Cornet A, Bettelli E, Oukka M, Cambouris C, Avellana-Adalid V, Kosmatopoulos K, et al. Role of astrocytes in antigen presentation and naive T-cell activation. J Neuroimmunol. 2000;106:69–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Calabresi PA. Considerations in the treatment of relapsing-remitting multiple sclerosis. Neurology. 2002;58:S10–22.PubMedGoogle Scholar
  7. 7.
    Zamvil SS, Steinman L. Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology. 2002;59:970–1.PubMedGoogle Scholar
  8. 8.
    Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6:1399–402.PubMedCrossRefGoogle Scholar
  9. 9.
    Stanislaus R, Pahan K, Singh AK, Singh I. Amelioration of experimental allergic encephalomyelitis in Lewis rats by lovastatin. Neurosci Lett. 1999;269:71–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420:78–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med. 2001;7:687–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Turner NA, O’Regan DJ, Ball SG, Porter KE. Simvastatin inhibits MMP-9 secretion from human saphenous vein smooth muscle cells by inhibiting the RhoA/ROCK pathway and reducing MMP-9 mRNA levels. FASEB J. 2005;19:804–6.PubMedGoogle Scholar
  13. 13.
    Nath N, Giri S, Prasad R, Singh AK, Singh I. Potential targets of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for multiple sclerosis therapy. J Immunol. 2004;172:1273–86.PubMedGoogle Scholar
  14. 14.
    Igel M, Sudhop T, von Bergmann K. Pharmacology of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), including rosuvastatin and pitavastatin. J Clin Pharmacol. 2002;42:835–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Ghittoni R, Napolitani G, Benati D, Ulivieri C, Patrussi L, Laghi Pasini F, et al. Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. Eur J Immunol. 2006;36:2885–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Simons K, Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest. 2002;110:597–603.PubMedGoogle Scholar
  17. 17.
    Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110:3–8.PubMedGoogle Scholar
  18. 18.
    Jury EC, Isenberg DA, Mauri C, Ehrenstein MR. Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus. J Immunol. 2006;177:7416–22.PubMedGoogle Scholar
  19. 19.
    Liao JK. Isoprenoids as mediators of the biological effects of statins. J Clin Invest. 2002;110:285–8.PubMedGoogle Scholar
  20. 20.
    Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest. 1997;100:2671–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol. 2006;6:358–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Dunn SE, Youssef S, Goldstein MJ, Prod’homme T, Weber MS, Zamvil SS, et al. Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. J Exp Med. 2006;203:401–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Walters CE, Pryce G, Hankey DJ, Sebti SM, Hamilton AD, Baker D, et al. Inhibition of Rho GTPases with protein prenyltransferase inhibitors prevents leukocyte recruitment to the central nervous system and attenuates clinical signs of disease in an animal model of multiple sclerosis. J Immunol. 2002;168:4087–94.PubMedGoogle Scholar
  24. 24.
    Prasad R, Giri S, Nath N, Singh I, Singh AK. Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-kappa B pathway by lovastatin limits endothelial-monocyte cell interaction. J Neurochem. 2005;94:204–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Peng X, Jin J, Giri S, Montes M, Sujkowski D, Tang Y, et al. Immunomodulatory effects of 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors, potential therapy for relapsing remitting multiple sclerosis. J Neuroimmunol. 2006;178:130–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Yilmaz A, Reiss C, Tantawi O, Weng A, Stumpf C, Raaz D, et al. HMG-CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis. Atherosclerosis. 2004;172:85–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Lawman S, Mauri C, Jury EC, Cook HT, Ehrenstein MR. Atorvastatin inhibits autoreactive B cell activation and delays lupus development in New Zealand black/white F1 mice. J Immunol. 2004;173:7641–6.PubMedGoogle Scholar
  28. 28.
    Leung BP, Sattar N, Crilly A, Prach M, McCarey DW, Payne H, et al. A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J Immunol. 2003;170:1524–30.PubMedGoogle Scholar
  29. 29.
    McKay A, Leung BP, McInnes IB, Thomson NC, Liew FY. A novel anti-inflammatory role of simvastatin in a murine model of allergic asthma. J Immunol. 2004;172:2903–8.PubMedGoogle Scholar
  30. 30.
    Sun D, Fernandes G. Lovastatin inhibits bone marrow-derived dendritic cell maturation and upregulates proinflammatory cytokine production. Cell Immunol. 2003;223:52–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferro D, Parrotto S, Basili S, Alessandri C, Violi F. Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia. J Am Coll Cardiol. 2000;36:427–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21:1712–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang X, Jin J, Peng X, Ramgolam VS, Markovic-Plese S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4 lymphocytes. J Immunol. 2008;180:6988–96.Google Scholar
  34. 34.
    Li Y, Chu N, Rostami A, Zhang GX. Dendritic cells transduced with SOCS-3 exhibit a tolerogenic/DC2 phenotype that directs type 2 Th cell differentiation in vitro and in vivo. J Immunol. 2006;177:1679–88.PubMedGoogle Scholar
  35. 35.
    Elliott J, Johnston JA. SOCS: role in inflammation, allergy and homeostasis. Trends Immunol. 2004;25:434–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Jo D, Liu D, Yao S, Collins RD, Hawiger J. Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nat Med. 2005;11:892–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Wong PK, Egan PJ, Croker BA, O’Donnell K, Sims NA, Drake S, et al. SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J Clin Invest. 2006;116:1571–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Huang KC, Chen CW, Chen JC, Lin WW. Statins induce suppressor of cytokine signaling-3 in macrophages. FEBS Lett. 2003;555:385–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Weber MS, Youssef S, Dunn SE, Prod’homme T, Neuhaus O, Stuve O, et al. Statins in the treatment of central nervous system autoimmune disease. J Neuroimmunol. 2006;178:140–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Neuhaus O, Strasser-Fuchs S, Fazekas F, Kieseier BC, Niederwieser G, Hartung HP, et al. Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology. 2002;59:990–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Furuzawa-Carballeda J, Vargas-Rojas MI, Cabral AR. Autoimmune inflammation from the Th17 perspective. Autoimmun Rev. 2007;6:169–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13:1173–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med. 2007;13:711–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol. 2006;7:937–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Gocke AR, Cravens PD, Ben LH, Hussain RZ, Northrop SC, Racke MK, et al. T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J Immunol. 2007;178:1341–8.PubMedGoogle Scholar
  48. 48.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8:942–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Evans HG, Suddason T, Jackson I, Taams LS, Lord GM. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc Natl Acad Sci USA. 2007;104:17034–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen Z, Tato CM, Muul L, Laurence A, O’Shea JJ. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 2007;56:2936–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203:1685–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8:639–46.PubMedCrossRefGoogle Scholar
  54. 54.
    Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med. 2002;8:500–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Matusevicius D, Kivisakk P, He B, Kostulas N, Ozenci V, Fredrikson S, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler. 1999;5:101–4.PubMedGoogle Scholar
  56. 56.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204:1849–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Wei L, Laurence A, Elias KM, O’Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem. 2007;282:34605–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Paintlia AS, Paintlia MK, Khan M, Vollmer T, Singh AK, Singh I. HMG-CoA reductase inhibitor augments survival and differentiation of oligodendrocyte progenitors in animal model of multiple sclerosis. FASEB J. 2005;19:1407–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations