Immunologic Research

, Volume 41, Issue 2, pp 123–136 | Cite as

Persistent parasites and immunologic memory in cutaneous leishmaniasis: implications for vaccine designs and vaccination strategies



Despite a plethora of publications on the murine model of cutaneous leishmaniasis and their contribution to our understanding of the factors that regulate the development of CD4+ T cell immunity in vivo, there is still no effective vaccine against the human disease. While recovery from natural or experimental infection with Leishmania major, the causative agent of human cutaneous leishmaniasis, results in persistence of parasites at the primary infection site and the development of long-lasting immunity to reinfection, vaccination with killed parasites or recombinant proteins induces only short-term protection. The reasons for the difference in protective immunity following recovery from live infection and vaccination with heat-killed parasites are not known. This may in part be related to persistence of live parasites following healing of primary cutaneous lesions, because complete clearance of parasites leads to rapid loss of infection-induced immunity. Recent reports indicate that in addition to persistent parasites, IL-10-producing natural regulatory T cells may also play critical roles in the maintenance and loss of infection-induced immunity. This review focuses on current understanding of the factors that regulate the development, maintenance and loss of anti-Leishmania memory responses and highlights the role of persistent parasites and regulatory T cells in this process. Understanding these factors is crucial for designing effective vaccines and vaccination strategies against cutaneous leishmaniasis.


Leishmania Infection-induced immunity Vaccination Memory T cells Parasite persistence 



This work is supported by grants from The Canadian Institutes of Health Research (CIHR), Manitoba Health Research Council (MHRC), and Manitoba Medical Service Foundation (MMSF).


  1. 1.
    Swain SL, Agrewala JN, Brown DM, Roman E. Regulation of memory CD4 T cells: generation, localization and persistence. Adv Exp Med Biol. 2002;512:113–20.PubMedGoogle Scholar
  2. 2.
    Sprent J, Surh CD. T cell memory. Annu Rev Immunol. 2002;20:551–79.PubMedCrossRefGoogle Scholar
  3. 3.
    Gourley TS, Wherry EJ, Masopust D, Ahmed R. Generation and maintenance of immunological memory. Semin Immunol. 2004;16:323–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Whitmire JK, Murali-Krishna K, Altman J, Ahmed R. Antiviral CD4 and CD8 T-cell memory: differences in the size of the response and activation requirements. Philos Trans R Soc Lond B Biol Sci. 2000;355:373–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Slifka MK. Immunological memory to viral infection. Curr Opin Immunol. 2004;16:443–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Zinkernagel RM, Hengartner H. On immunity against infections and vaccines: credo 2004. Scand J Immunol. 2004;60:9–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Brown SP, Grenfell BT. An unlikely partnership: parasites, concomitant immunity and host defence. Proc Biol Sci. 2001;268:2543–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Manfras BJ, Reuter S, Wendland T, Boehm BO, Kern P. Impeded Th1 CD4 memory T cell generation in chronic-persisting liver infection with Echinococcus multilocularis. Int Immunol. 2004;16:43–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Brake DA. Parasites and immune responses: memory illusion? DNA Cell Biol. 2003;22:405–19.PubMedCrossRefGoogle Scholar
  10. 10.
    Albareda MC, Laucella SA, Alvarez MG, Armenti AH, Bertochi G, Tarleton RL, Postan M. Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas’ disease patients. Int Immunol. 2006;18:465–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Desjeux P. Leishmaniasis. Nat Rev Microbiol. 2004;2:692.PubMedCrossRefGoogle Scholar
  12. 12.
    Desjeux P. Human leishmaniases: epidemiology and public health aspects. World Health Stat Q. 1992;45:267–75.PubMedGoogle Scholar
  13. 13.
    Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Berman J. Current treatment approaches to leishmaniasis. Curr Opin Infect Dis. 2003;16:397–401.PubMedCrossRefGoogle Scholar
  15. 15.
    Vanloubbeeck Y., Jones DE. The immunology of Leishmania infection and the implications for vaccine development. Ann N Y Acad Sci. 2004;1026:267–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Reiner SL, Locksley RM. The regulation of immunity to Leishmania major. Annu Rev Immunol. 1995;13:151–77.PubMedCrossRefGoogle Scholar
  17. 17.
    Scott P. Th cell development and regulation in experimental cutaneous leishmaniasis. Chem Immunol. 1996;63:98–114.PubMedCrossRefGoogle Scholar
  18. 18.
    Locksley RM, Heinzel FP, Holaday BJ, Mutha SS, Reiner SL, Sadick MD. Induction of Th1 and Th2 CD4+ subsets during murine Leishmania major infection. Res Immunol. 1991;142:28–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Scharton-Kersten T, Afonso LC, Wysocka M, Trinchieri G, Scott P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J Immunol. 1995;154:5320–30.PubMedGoogle Scholar
  20. 20.
    Scott P, Pearce E, Cheever AW, Coffman RL, Sher A. Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease. Immunol Rev. 1989;112:161–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Scott P. The role of Th1 and Th2 cells in experimental cutaneous leishmaniasis. Exp Parasitol. 1989;68:369–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Afonso LC, Scharton TM, Vieira LQ, Wysocka M, Trinchieri G, Scott P. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science. 1994;263:235–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Park AY, Scott P. Il-12: keeping cell-mediated immunity alive. Scand J Immunol. 2001;53:529–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Jones D, Elloso MM, Showe L, Williams D, Trinchieri G, Scott P. Differential regulation of the interleukin-12 receptor during the innate immune response to Leishmania major. Infect Immun. 1998;66:3818–24.PubMedGoogle Scholar
  25. 25.
    Himmelrich H, Parra-Lopez C, Tacchini-Cottier F, Louis JA, Launois P. The IL-4 rapidly produced in BALB/c mice after infection with Leishmania major down-regulates IL-12 receptor beta 2-chain expression on CD4+ T cells resulting in a state of unresponsiveness to IL-12. J Immunol. 1998;161:6156–63.PubMedGoogle Scholar
  26. 26.
    Louis J, Himmelrich H, Parra-Lopez C, Tacchini-Cottier F, Launois P. Regulation of protective immunity against Leishmania major in mice. Curr Opin Immunol. 1998;10:459–64.PubMedCrossRefGoogle Scholar
  27. 27.
    Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol. 2001;166:1141–7.PubMedGoogle Scholar
  28. 28.
    Groux H, Cottrez F, Rouleau M, Mauze S, Antonenko S, Hurst S, McNeil T, Bigler M, Roncarolo MG, Coffman RL. A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J Immunol. 1999;162:1723–9.PubMedGoogle Scholar
  29. 29.
    Mosmann TR, Moore KW. The role of IL-10 in cross-regulation of Th1 and Th2 responses. Immunol Today. 1991;12:A49–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Chatelain R, Mauze S, Coffman RL. Experimental Leishmania major infection in mice: role of IL-10. Parasite Immunol. 1999;21:211–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Belkaid Y. The role of CD4+CD25+ regulatory T cells in Leishmania infection. Expert Opin Biol Ther. 2003;3:875–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420:502–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Hondowicz B, Scott P. Influence of host and parasite factors on the innate immune response and Th2 stability following infection with Leishmania major. Microbes Infect. 1999;1:65–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Gumy A, Louis JA, Launois P. The murine model of infection with Leishmania major and its importance for the deciphering of mechanisms underlying differences in Th cell differentiation in mice from different genetic backgrounds. Int J Parasitol. 2004;34:433–44.PubMedCrossRefGoogle Scholar
  35. 35.
    von Stebut E, Udey MC. Requirements for Th1-dependent immunity against infection with Leishmania major. Microbes Infect. 2004;6:1102–9.CrossRefGoogle Scholar
  36. 36.
    Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2:845–58.PubMedCrossRefGoogle Scholar
  37. 37.
    Nadim A, Javadian E, Tahvildar-Bidruni G, Ghorbani M. Effectiveness of leishmanization in the control of cutaneous leishmaniasis. Bull Soc Pathol Exot Filiales. 1983;76:377–83.PubMedGoogle Scholar
  38. 38.
    Modabber F. Experiences with vaccines against cutaneous leishmaniasis: of men and mice. Parasitology. 1989;98 Suppl:S49–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Shuikina EE, Sergiev VP, Triers II, Shcherbakov VA, Diveev S. [Experience of antileishmaniasis vaccinations with cultures of Leishmania tropica major grown in various types of media]. Med Parazitol (Mosk). 1968;37:648–51.Google Scholar
  40. 40.
    Sergiev PG, Beislekhem RI, Moshkovskii, ShD, Demina NA, Kellina OI. Results of massive vaccination against zoonotic cutaneous leishmaniasis. Med Parazitol (Mosk). 1970;39:541–51.Google Scholar
  41. 41.
    Khamesipour A, Dowlati Y, Asilian A, Hashemi-Fesharki R, Javadi A, Noazin S, Modabber F. Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine. 2005;23:3642–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Muller I. Role of T cell subsets during the recall of immunologic memory to Leishmania major. Eur J Immunol. 1992;22:3063–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Muller I, Kropf P, Etges RJ, Louis JA. Gamma interferon response in secondary Leishmania major infection: role of CD8+ T cells. Infect Immun. 1993;61:3730–8.PubMedGoogle Scholar
  44. 44.
    Park AY, Hondowicz BD, Scott P. IL-12 is required to maintain a Th1 response during Leishmania major infection. J Immunol. 2000;165:896–902.PubMedGoogle Scholar
  45. 45.
    Stobie L, Gurunathan S, Prussin C, Sacks DL, Glaichenhaus N, Wu CY, Seder RA. The role of antigen and IL-12 in sustaining Th1 memory cells in vivo: IL-12 is required to maintain memory/effector Th1 cells sufficient to mediate protection to an infectious parasite challenge. Proc Natl Acad Sci USA. 2000;97:8427–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Park AY, Hondowicz B, Kopf M, Scott P. The role of IL-12 in maintaining resistance to Leishmania major. J Immunol. 2002;168:5771–7.PubMedGoogle Scholar
  47. 47.
    Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10:1104–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Scott P. Immunologic memory in cutaneous leishmaniasis. Cell Microbiol. 2005;7:1707–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Scott P, Artis D, Uzonna J, Zaph C. The development of effector and memory T cells in cutaneous leishmaniasis: the implications for vaccine development. Immunol Rev. 2004;201:318–38.PubMedCrossRefGoogle Scholar
  50. 50.
    Uzonna JE, Wei G, Yurkowski D, Bretscher P. Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease. J Immunol. 2001;167:6967–74.PubMedGoogle Scholar
  51. 51.
    Suffia IJ, Reckling SK, Piccirillo CA, Goldszmid RS, Belkaid Y. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med. 2006;203:777–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Dutton RW, Bradley LM, Swain SL. T cell memory. Annu Rev Immunol. 1998;16:201–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Gray D, Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med. 1991;174:969–74.PubMedCrossRefGoogle Scholar
  54. 54.
    Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Tough DF. Deciphering the relationship between central and effector memory CD8+ T cells. Trends Immunol. 2003;24:404–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Sallusto F, Lanzavecchia A. Exploring pathways for memory T cell generation. J Clin Invest. 2001;108:805–6.PubMedGoogle Scholar
  58. 58.
    Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, von Andrian UH, Ahmed R. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003;4:225–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol. 2001;2:415–22.PubMedGoogle Scholar
  60. 60.
    Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001;410:101–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Aebischer T, Moody SF, Handman E. Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: a possible hazard for the host. Infect Immun. 1993;61:220–6.PubMedGoogle Scholar
  62. 62.
    Aebischer T. Recurrent cutaneous leishmaniasis: a role for persistent parasites? Parasitol Today. 1994;10:25–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Berhe N, Hailu A, Wolday D, Negesse Y, Cenini P, Frommel D. Ethiopian visceral leishmaniasis patients co-infected with human immunodeficiency virus. Trans R Soc Trop Med Hyg. 1995;89:205–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Wolday D., Berhe N, Akuffo H, Britton S. Leishmania-HIV interaction: immunopathogenic mechanisms. Parasitol Today. 1999;15:182–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Wolday D, Berhe N, Akuffo H, Desjeux P, Britton S. Emerging Leishmania/HIV co-infection in Africa. Med Microbiol Immunol. (Berl) 2001;190:65–7.Google Scholar
  66. 66.
    Saravia NG, Weigle K, Segura I, Giannini SH, Pacheco R, Labrada LA, Goncalves A. Recurrent lesions in human Leishmania braziliensis infection-reactivation or reinfection? Lancet. 1990;336:398–402.PubMedCrossRefGoogle Scholar
  67. 67.
    Stenger S, Donhauser N, Thuring H, Rollinghoff M, Bodgan C. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med. 1996;183:1501–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Mendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y. Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med. 2004;200:201–10.PubMedCrossRefGoogle Scholar
  69. 69.
    Uzonna JE, Bretscher PA. Anti-IL-4 antibody therapy causes regression of chronic lesions caused by medium-dose Leishmania major infection in BALB/c mice. Eur J Immunol. 2001;31:3175–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Campanelli AP, Roselino AM, Cavassani KA, Pereira MS, Mortara RA, Brodskyn CI, Goncalves HS, Belkaid Y, Barral-Netto M, Barral A, Silva JS. CD4+CD25+ T cells in skin lesions of patients with cutaneous leishmaniasis exhibit phenotypic and functional characteristics of natural regulatory T cells. J Infect Dis. 2006;193:1313–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Bourreau E, Prevot G, Gardon J, Pradinaud R, Launois P. High intralesional interleukin-10 messenger RNA expression in localized cutaneous leishmaniasis is associated with unresponsiveness to treatment. J Infect Dis. 2001;184:1628–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Habibi GR, Khamesipour A, McMaster WR, Mahboudi F. Cytokine gene expression in healing and non-healing cases of cutaneous leishmaniasis in response to in vitro stimulation with recombinant gp63 using semi-quantitative RT-PCR. Scand J Immunol. 2001;54:414–20.PubMedCrossRefGoogle Scholar
  73. 73.
    Spath GF, Lye LF, Segawa H, Sacks DL, Turco SJ, Beverley SM. Persistence Without Pathology in Phosphoglycan-Deficient Leishmania major. Science. 2003;301:1241–3.PubMedCrossRefGoogle Scholar
  74. 74.
    Lau LL, Jamieson BD, Somasundaram T, Ahmed R. Cytotoxic T-cell memory without antigen. Nature. 1994;369:648–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Swain SL. CD4 T-cell memory can persist in the absence of class II. Philos Trans R Soc Lond B Biol Sci. 2000;355:407–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Gray D. A role for antigen in the maintenance of immunological memory. Nat Rev Immunol. 2002;2:60–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Zinkernagel RM. On differences between immunity and immunological memory. Curr Opin Immunol. 2002;14:523–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Wherry EJ, McElhaugh MJ, Eisenlohr LC. Generation of CD8(+) T cell memory in response to low, high, and excessive levels of epitope. J Immunol. 2002;168:4455–61.PubMedGoogle Scholar
  79. 79.
    Brown GV. Progress in the development of malaria vaccines: context and constraints. Parassitologia. 1999;41:429–32.PubMedGoogle Scholar
  80. 80.
    Andreassen J. Immunity to adult cestodes: basic knowledge and vaccination problems. A review. Parassitologia. 1991;33:45–53.PubMedGoogle Scholar
  81. 81.
    Rajakumar S, Bleiss W, Hartmann S, Schierack P, Marko A, Lucius R. Concomitant immunity in a rodent model of filariasis: the infection of Meriones unguiculatus with Acanthocheilonema viteae. J Parasitol. 2006;92:41–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Struik SS, Riley EM. Does malaria suffer from lack of memory? Immunol Rev. 2004;201:268–90.PubMedCrossRefGoogle Scholar
  83. 83.
    Anderson CF, Mendez S, Sacks DL. Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J Immunol. 2005;174:2934–41.PubMedGoogle Scholar
  84. 84.
    Titus RG, Gueiros-Filho FJ, de Freitas LA, Beverley SM. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci USA. 1995;92:10267–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Uzonna JE, Spath GF, Beverley SM, Scott P. Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol. 2004;172:3793–7.PubMedGoogle Scholar
  86. 86.
    Modabber F. Vaccines against leishmaniasis. Ann Trop Med Parasitol. 1995;89(Suppl 1):83–8.PubMedGoogle Scholar
  87. 87.
    Marzochi KB, Marzochi MA, Silva AF, Grativol N, Duarte R, Confort EM, Modabber F. Phase 1 study of an inactivated vaccine against American tegumentary leishmaniasis in normal volunteers in Brazil. Mem Inst Oswaldo Cruz. 1998;93:205–12.PubMedCrossRefGoogle Scholar
  88. 88.
    Sharifi I, FeKri AR, Aflatonian MR, Khamesipour A, Nadim A, Mousavi MR, Momeni AZ, Dowlati Y, Godal T, Zicker F, Smith PG, Modabber F. Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet. 1998;351:1540–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Momeni AZ, Jalayer T, Emamjomeh M, Khamesipour A, Zicker F, Ghassemi RL, Dowlati Y, Sharifi I, Aminjavaheri M, Shafiei A, Alimohammadian MH, Hashemi-Fesharki R, Nasseri K, Godal T, Smith PG, Modabber F. A randomised, double-blind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine. 1999;17:466–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Velez ID, del Pilar Agudelo S, Arbelaez MP, Gilchrist K, Robledo SM, Puerta JA, Zicker F, Berman J, Modabber F. Safety and immunogenicity of a killed Leishmania (L.) amazonensis vaccine against cutaneous leishmaniasis in Colombia: a randomized controlled trial. Trans R Soc Trop Med Hyg. 2000;94:698–703.PubMedCrossRefGoogle Scholar
  91. 91.
    Khalil EA, El Hassan AM, Zijlstra EE, Mukhtar MM, Ghalib HW, Musa B, Ibrahim ME, Kamil AA, Elsheikh M, Babiker A, Modabber F. Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet. 2000;356:1565–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Mahmoodi M, Khamesipour A, Dowlati Y, Rafati S, Momeni AZ, Emamjomeh M, Hejazi H, Modabber F. Immune response measured in human volunteers vaccinated with autoclaved Leishmania major vaccine mixed with low dose of BCG. Clin Exp Immunol. 2003;134:303–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Armijos RX, Weigel MM, Calvopina M, Hidalgo A, Cevallos W, Correa J. Safety, immunogenecity, and efficacy of an autoclaved Leishmania amazonensis vaccine plus BCG adjuvant against New World cutaneous leishmaniasis. Vaccine. 2004;22:1320–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Gurunathan S, Sacks DL, Brown DR, Reiner SL, Charest H, Glaichenhaus N, Seder RA. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med. 1997;186:1137–47.PubMedCrossRefGoogle Scholar
  95. 95.
    Mitchell GF, Handman E. Leishmania tropica major in mice: vaccination against cutaneous leishmaniasis in mice of high genetic susceptibility. Aust J Exp Biol Med Sci. 1983;61:11–25.PubMedCrossRefGoogle Scholar
  96. 96.
    Handman E, Noormohammadi AH, Curtis JM, Baldwin T, Sjolander A. Therapy of murine cutaneous leishmaniasis by DNA vaccination. Vaccine. 2000;18:3011–7.PubMedCrossRefGoogle Scholar
  97. 97.
    da Silva VO, Borja-Cabrera GP, Correia Pontes NN, de Souza EP, Luz KG, Palatnik M, Palatnik de Sousa CB. A phase III trial of efficacy of the FML-vaccine against canine kala-azar in an endemic area of Brazil (Sao Goncalo do Amaranto, RN). Vaccine. 2000;19:1082–92.PubMedCrossRefGoogle Scholar
  98. 98.
    Aebischer T, Wolfram M, Patzer SI, Ilg T, Wiese M, Overath P. Subunit vaccination of mice against new world cutaneous leishmaniasis: comparison of three proteins expressed in amastigotes and six adjuvants. Infect Immun. 2000;68:1328–36.PubMedCrossRefGoogle Scholar
  99. 99.
    Stager S, Smith DF, Kaye PM. Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol. 2000;165:7064–71.PubMedGoogle Scholar
  100. 100.
    Ahmed SB, Bahloul C, Robbana C, Askri S, Dellagi K. A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major. Vaccine. 2004;22:1631–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Vardy DA, Cohen A, Kachko L, Zvulunov A, Frankenburg S. Relapse of cutaneous leishmaniasis in a patient with an infected subcutaneous rheumatoid nodule. Br J Dermatol. 1999;141:914–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Kebaier C, Uzonna JE, Beverley SM, Scott P. Immunization with persistent attenuated Delta lpg2 Leishmania major parasites requires adjuvant to provide protective immunity in C57BL/6 mice. Infect Immun. 2006;74:777–80.PubMedCrossRefGoogle Scholar
  103. 103.
    Veras P, Brodskyn C, Balestieri F, Ld F, Ramos A, Queiroz A, Barral A, Beverley S, Barral-Netto M. A dhfr-ts- leishmania major knockout mutant cross-protects against leishmania amazonensis [In Process Citation]. Mem Inst Oswaldo Cruz. 1999;94:491–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Parasite Vaccines Development Laboratory, Department of ImmunologyUniversity of ManitobaWinnipegCanada

Personalised recommendations