Immunologic Research

, Volume 41, Issue 1, pp 15–25 | Cite as

L-arginine metabolism and its impact on host immunity against Leishmania infection

  • Nanchaya Wanasen
  • Lynn SoongEmail author


Leishmaniasis is a vector-borne disease found in many countries worldwide. The causative agent of the disease, Leishmania spp., lives as an obligate intracellular parasite within mammalian hosts. Since tissue macrophages are major target cells for parasite replication, the outcome of infection depends largely on the activation status of these cells. L-arginine is a crucial amino acid required for both nitric oxide (NO)-mediated parasite killing and polyamine-mediated parasite replication. This review highlights the significance of L-arginine as a factor determining the outcomes of Leishmania infection in vitro and its influences on host immune responses in vivo. Various therapeutic approaches targeting L-arginine metabolic pathways during infections with Leishmania are also discussed.


L-arginine transporter Arginase Leishmania Host immune response Macrophages Nitric oxide 



Dendritic cells




Nitric oxide


Inducible nitric oxide synthase




Tumor necrosis factor






Ornithine decarboxylase


Cationic amino acid transporter






  1. 1.
    Bogitsh BJ, Carter CE, Oeltmann TN. Chapter 6. Blood and tissue protozoa I: hemaflagellates. In: Human Parastiology. 3rd ed. Burlington: Elsevier Academic Press; 2005. p. 101–14.Google Scholar
  2. 2.
    Moll H, Flohe S, Rollinghoff M. Dendritic cells in Leishmania major-immune mice harbor persistent parasites and mediate an antigen-specific T cell immune response. Eur J Immunol 1995;25:693–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Bogdan C, Donhauser N, Doring R, Rollinghoff M, Diefenbach A, Rittig MG. Fibroblasts as host cells in latent leishmaniosis. J Exp Med 2000;191:2121–30.PubMedCrossRefGoogle Scholar
  4. 4.
    van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, Laskay T. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 2004;173:6521–5.PubMedGoogle Scholar
  5. 5.
    Noel W, Raes G, Hassanzadeh GG, De Baetselier P, Beschin A. Alternatively activated macrophages during parasite infections. Trends Parasitol 2004;20:126–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Kreider T, Anthony RM, Urban JF Jr., Gause WC. Alternatively activated macrophages in helminth infections. Curr Opin Immunol 2007;19:448–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Popovic PJ, Zeh HJ 3rd, Ochoa JB. Arginine and immunity. J Nutr 2007;137:1681S–6S.PubMedGoogle Scholar
  8. 8.
    Peluffo G, Piacenza L, Irigoin F, Alvarez MN, Radi R. L-arginine metabolism during interaction of Trypanosoma cruzi with host cells. Trends Parasitol 2004;20:363–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Morris SM Jr. Enzymes of arginine metabolism. J Nutr 2004;134:2743S–7S; discussion 2765S–7S.Google Scholar
  10. 10.
    Green SJ, Crawford RM, Hockmeyer JT, Meltzer MS, Nacy CA. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. J Immunol 1990;145:4290–7.PubMedGoogle Scholar
  11. 11.
    Liew FY, Li Y, Moss D, Parkinson C, Rogers MV, Moncada S. Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages. Eur J Immunol 1991;21:3009–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Bhattacharyya S, Ghosh S, Dasgupta B, Mazumder D, Roy S, Majumdar S. Chemokine-induced leishmanicidal activity in murine macrophages via the generation of nitric oxide. J Infect Dis 2002;185:1704–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Brandonisio O, Panaro MA, Fumarola I, Sisto M, Leogrande D, Acquafredda A, Spinelli R, Mitolo V. Macrophage chemotactic protein–1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages. Clin Exp Med 2002;2:125–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Vasquez RE, Soong L. CXCL10/gamma interferon-inducible protein 10-mediated protection against Leishmania amazonensis infection in mice. Infect Immun 2006;74:6769–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Iniesta V, Gomez-Nieto LC, Molano I, Mohedano A, Carcelen J, Miron C, Alonso C, Corraliza I. Arginase I induction in macrophages, triggered by Th2-type cytokines, supports the growth of intracellular Leishmania parasites. Parasite Immunol 2002;24:113–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Barksdale AR, Bernard AC, Maley ME, Gellin GL, Kearney PA, Boulanger BR, Tsuei BJ, Ochoa JB. Regulation of arginase expression by T-helper II cytokines and isoproterenol. Surgery 2004;135:527–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Raina A, Janne J. Biosynthesis of putrescine: characterization of ornithine decarboxylase from regenerating rat liver. Acta Chem Scand 1968;22:2375–8.PubMedGoogle Scholar
  18. 18.
    Kane MM, Mosser DM. The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 2001;166:1141–7.PubMedGoogle Scholar
  19. 19.
    Iniesta V, Gomez-Nieto LC, Corraliza I. The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J Exp Med 2001;193:777–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Gotoh T, Mori M. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J Cell Biol 1999;144:427–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Peck MD, Babcock GF, Alexander JW, Billiar T, Ochoa J. High doses of dietary arginine during repletion impair weight gain and increase infectious mortality in protein-malnourished mice. Br J Nutr 1995;74:787–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Yeramian A, Martin L, Serrat N, Arpa L, Soler C, Bertran J, McLeod C, Palacin M, Modolell M, Lloberas J, Celada A. Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. J Immunol 2006;176:5918–24.PubMedGoogle Scholar
  23. 23.
    Stevens BR, Kakuda DK, Yu K, Waters M, Vo CB, Raizada MK. Induced nitric oxide synthesis is dependent on induced alternatively spliced CAT-2 encoding L-arginine transport in brain astrocytes. J Biol Chem 1996;271:24017–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacin M, Lloberas J, Celada A. Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur J Immunol 2006;36:1516–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Closs EI, Simon A, Vekony N, Rotmann A. Plasma membrane transporters for arginine. J Nutr 2004;134:2752S–9S; discussion 2765S–7SGoogle Scholar
  26. 26.
    Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 2004;447:532–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Closs EI, Albritton LM, Kim JW, Cunningham JM. Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J Biol Chem 1993;268:7538–44.PubMedGoogle Scholar
  28. 28.
    Wanasen N, MacLeod CL, Ellies LG, Soong L. L-arginine and cationic amino acid transporter 2B regulate growth and survival of Leishmania amazonensis amastigotes in macrophages. Infect Immun 2007;75:2802–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Hammermann R, Dreissig MD, Mossner J, Fuhrmann M, Berrino L, Gothert M, Racke K. Nuclear factor-kappaB mediates simultaneous induction of inducible nitric-oxide synthase and up-regulation of the cationic amino acid transporter CAT-2B in rat alveolar macrophages. Mol Pharmacol 2000;58:1294–302.PubMedGoogle Scholar
  30. 30.
    Martin L, Comalada M, Marti L, Closs EI, MacLeod CL, Martin del Rio R, Zorzano A, Modolell M, Celada A, Palacin M, Bertran J. Granulocyte-macrophage colony-stimulating factor increases L-arginine transport through the induction of CAT2 in bone marrow-derived macrophages. Am J Physiol Cell Physiol 2006;290:C1364–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Qi H, Ji J, Wanasen N, Soong L. Enhanced replication of Leishmania amazonensis amastigotes in gamma interferon-stimulated murine macrophages: implications for the pathogenesis of cutaneous leishmaniasis. Infect Immun 2004;72:988–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Lemesre JL, Sereno D, Daulouede S, Veyret B, Brajon N, Vincendeau P. Leishmania spp.: nitric oxide-mediated metabolic inhibition of promastigote and axenically grown amastigote forms. Exp Parasitol 1997;86:58–68.PubMedCrossRefGoogle Scholar
  33. 33.
    Camargo EP, Coelho JA, Moraes G, Figueiredo EN. Trypanosoma spp., Leishmania spp. and Leptomonas spp.: enzymes of ornithine-arginine metabolism. Exp Parasitol 1978;46:141–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Krassner SM, Flory B. Essential amino acids in the culture of Leishmania tarentolae. J Parasitol 1971;57:917–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Steiger RF, Steiger E. Cultivation of Leishmania donovani and Leishmania braziliensis in defined media: nutritional requirements. J Protozool 1977;24:437–41.PubMedGoogle Scholar
  36. 36.
    Shaked-Mishan P, Suter-Grotemeyer M, Yoel-Almagor T, Holland N, Zilberstein D, Rentsch D. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol Microbiol 2006;60:30–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Closs EI, Graf P, Habermeier A, Cunningham JM, Forstermann U. Human cationic amino acid transporters hCAT-1, hCAT-2A, hCAT-2B: three related carriers with distinct transport properties. Biochemistry 1997;36:6462–8.PubMedCrossRefGoogle Scholar
  38. 38.
    da Silva ER, Castilho TM, Pioker FC, Silva CHTP, Floeter-Winter LM. Genomic organisation and transcription characterisation of the gene encoding Leishmania (Leishmania) amazonensis arginase and its protein structure prediction. Int J Parasitol 2002;32:727–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Roberts SC, Tancer MJ, Polinsky MR, Gibson KM, Heby O, Ullman B. Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J Biol Chem 2004;279:23668–78.PubMedCrossRefGoogle Scholar
  40. 40.
    Vendrame CM, Carvalho MD, Rios FJ, Manuli ER, Petitto-Assis F, Goto H. Effect of insulin-like growth factor-I on Leishmania amazonensis promastigote arginase activation and reciprocal inhibition of NOS2 pathway in macrophage in vitro. Scand J Immunol 2007;66:287–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Jiang Y, Roberts SC, Jardim A, Carter NS, Shih S, Ariyanayagam M, Fairlamb AH, Ullman B. Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J Biol Chem 1999;274:3781–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Sanchez CP, Gonzalez NS, Algranati ID. Stable ornithine decarboxylase in promastigotes of Leishmania mexicana mexicana. Biochem Biophys Res Commun 1989;161:754–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Paveto C, Pereira C, Espinosa J, Montagna AE, Farber M, Esteva M, Flawia MM, Torres HN. The nitric oxide transduction pathway in Trypanosoma cruzi. J Biol Chem 1995;270:16576–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Basu NK, Kole L, Ghosh A, Das PK. Isolation of a nitric oxide synthase from the protozoan parasite, Leishmania donovani. FEMS Microbiol Lett 1997;156:43–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Genestra M, de Souza WJ, Cysne-Finkelstein L, Leon LL. Comparative analysis of the nitric oxide production by Leishmania sp. Med Microbiol Immunol 2003;192:217–23.PubMedGoogle Scholar
  46. 46.
    Genestra M, Guedes-Silva D, Souza WJ, Cysne-Finkelstein L, Soares-Bezerra RJ, Monteiro FP, Leon LL. Nitric oxide synthase (NOS) characterization in Leishmania amazonensis axenic amastigotes. Arch Med Res 2006;37:328–33.PubMedCrossRefGoogle Scholar
  47. 47.
    Genestra M, Souza WJ, Guedes-Silva D, Machado GM, Cysne-Finkelstein L, Bezerra RJ, Monteiro F, Leon LL. Nitric oxide biosynthesis by Leishmania amazonensis promastigotes containing a high percentage of metacyclic forms. Arch Microbiol 2006;185:348–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 2005;18:293–305.PubMedCrossRefGoogle Scholar
  49. 49.
    Kima PE. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int J Parasitol 2007;37:1087–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Li P, Yin YL, Li D, Kim SW, Wu G. Amino acids and immune function. Br J Nutr 2007;98:237–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004;64:5839–49.PubMedCrossRefGoogle Scholar
  52. 52.
    Zabaleta J, McGee DJ, Zea AH, Hernandez CP, Rodriguez PC, Sierra RA, Correa P, Ochoa AC. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J Immunol 2004;173:586–93.PubMedGoogle Scholar
  53. 53.
    Kropf P, Baud D, Marshall SE, Munder M, Mosley A, Fuentes JM, Bangham CR, Taylor GP, Herath S, Choi BS, et al. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 2007;37:935–45.PubMedCrossRefGoogle Scholar
  54. 54.
    Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 2007;109:1568–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Ji J, Sun J, Soong L. Impaired expression of inflammatory cytokines and chemokines at early stages of infection with Leishmania amazonensis. Infect Immun 2003;71:4278–88.PubMedCrossRefGoogle Scholar
  56. 56.
    Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis 2007;7:581–96.PubMedCrossRefGoogle Scholar
  57. 57.
    Yang Z, Mosser DM, Zhang X. Activation of the MAPK, ERK, following Leishmania amazonensis infection of macrophages. J Immunol 2007;178:1077–85.PubMedGoogle Scholar
  58. 58.
    Xin L, Li Y, Soong L. Role of interleukin-1beta in activating the CD11chigh CD45RB- dendritic cell subset and priming Leishmania amazonensis-specific CD4+ T cells in vitro and in vivo. Infect Immun 2007;75:5018–26.PubMedCrossRefGoogle Scholar
  59. 59.
    de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJ, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 2002;110:1539–48.PubMedGoogle Scholar
  60. 60.
    Kobayashi T, Yamamoto M, Hiroi T, McGhee J, Takeshita Y, Kiyono H. Arginine enhances induction of T helper 1 and T helper 2 cytokine synthesis by Peyer’s patch alpha beta T cells and antigen-specific mucosal immune response. Biosci Biotechnol Biochem 1998;62:2334–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Yeh CL, Hsu CS, Chen SC, Hou YC, Chiu WC, Yeh SL. Effect of arginine on cellular adhesion molecule expression and leukocyte transmigration in endothelial cells stimulated by biological fluid from surgical patients. Shock 2007;28:39–44.PubMedCrossRefGoogle Scholar
  62. 62.
    Kropf P, Fuentes JM, Fahnrich E, Arpa L, Herath S, Weber V, Soler G, Celada A, Modolell M, Muller I. Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. Faseb J 2005;19:1000–2.PubMedGoogle Scholar
  63. 63.
    Mukherjee S, Ukil A, Das PK. Immunomodulatory peptide from cystatin, a natural cysteine protease inhibitor, against leishmaniasis as a model macrophage disease. Antimicrob Agents Chemother 2007;51:1700–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Matte C, Marquis JF, Blanchette J, Gros P, Faure R, Posner BI, Olivier M. Peroxovanadium-mediated protection against murine leishmaniasis: role of the modulation of nitric oxide. Eur J Immunol 2000;30:2555–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Bhakuni V, Singha UK, Dutta GP, Levy HB, Maheshwari RK. Killing of Leishmania donovani amastigotes by poly ICLC in hamsters. J Interferon Cytokine Res 1996;16:321–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Ghoda L, Phillips MA, Bass KE, Wang CC, Coffino P. Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. J Biol Chem 1990;265:11823–6.PubMedGoogle Scholar
  67. 67.
    Mamont PS, Duchesne MC, Grove J, Bey P. Anti-proliferative properties of DL-alpha-difluoromethyl ornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. Biochem Biophys Res Commun 1978;81:58–66.PubMedCrossRefGoogle Scholar
  68. 68.
    Dufe VT, Ingner D, Heby O, Khomutov AR, Persson L, Al-Karadaghi S. A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 1-amino-oxy-3-aminopropane. Biochem J 2007;405:261–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Mett H, Stanek J, Lopez-Ballester JA, Janne J, Alhonen L, Sinervirta R, Frei J, Regenass U. Pharmacological properties of the ornithine decarboxylase inhibitor 3-aminooxy-1-propanamine and several structural analogues. Cancer Chemother Pharmacol 1993;32:39–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Khomutov RM, Hyvonen T, Karvonen E, Kauppinen L, Paalanen T, Paulin L, Eloranta T, Pajula RL, Andersson LC, Poso H. 1-Aminooxy-3-aminopropane, a new and potent inhibitor of polyamine biosynthesis that inhibits ornithine decarboxylase, adenosylmethionine decarboxylase and spermidine synthase. Biochem Biophys Res Commun 1985;130:596–602.PubMedCrossRefGoogle Scholar
  71. 71.
    Mukhopadhyay R, Madhubala R. Effect of a bis(benzyl)polyamine analogue, and DL-alpha-difluoromethylornithine on parasite suppression and cellular polyamine levels in golden hamster during Leishmania donovani infection. Pharmacol Res 1993;28:359–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Kandpal M, Tekwani BL, Chauhan PM, Bhaduri AP. Correlation between inhibition of growth and arginine transport of Leishmania donovani promastigotes in vitro by diamidines. Life Sci 1996;59:PL75–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Basselin M, Badet-Denisot MA, Lawrence F, Robert-Gero M. Effects of pentamidine on polyamine level and biosynthesis in wild-type, pentamidine-treated, and pentamidine-resistant Leishmania. Exp Parasitol 1997;85:274–82.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Departments of Microbiology & Immunology, Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infections, Sealy Center for Vaccine DevelopmentUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Department of Pathology, Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infections, Sealy Center for Vaccine DevelopmentUniversity of Texas Medical BranchGalvestonUSA
  3. 3.National Center for Genetic Engineering and BiotechnologyKlong LuangThailand

Personalised recommendations