Immunologic Research

, Volume 39, Issue 1–3, pp 94–104

CD8 T cell memory development: CD4 T cell help is appreciated

  • Aaruni Khanolkar
  • Vladimir P. Badovinac
  • John T. Harty
Article

Abstract

An important goal of vaccination strategies is to elicit long term, effective immunity. Therefore it is imperative to define the parameters that regulate the development and preservation of the numbers and functional quality of cells that confer this property to the host. CD8 T cells are a key component of the host adaptive immune response that helps eradicate invading viruses and other cell-associated pathogens. Once the primary infection is controlled, the CD8 T cells transition from being effector cells into memory cells that act as sentinels of the immune system capable of rapidly purging the host of recurrent infections by the same pathogen. The factors that regulate and orchestrate this transition from effector CD8 T cells into functionally robust memory CD8 T cells are poorly understood. In recent years it has been determined that CD4 T cells play a vital role in the survival and functional responsiveness of memory CD8 T cells. However, the mechanism(s) of this interaction are still unclear.

Keywords

Memory Helped Unhelped Rechallenge Cytokines Immunization Proliferation Adoptive transfer 

References

  1. 1.
    Harty JT, Tvinnereim AR, White DW. CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 2000;18:275–308.PubMedCrossRefGoogle Scholar
  2. 2.
    Badovinac VP, Harty JT. CD8(+) T-cell homeostasis after infection: setting the curve. Microbes Infect 2002;4:441–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Badovinac VP, Harty JT. Memory lanes. Nat Immunol 2003;4:212–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Badovinac VP, Harty JT. Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol Rev 2006;211:67–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Zinkernagel RM. On differences between immunity, immunological memory. Curr Opin Immunol 2002;14:523–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Sprent J, Surh CD. T cell memory. Annu Rev Immunol 2002;20:551–79.PubMedCrossRefGoogle Scholar
  7. 7.
    Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol 2003;4:835–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 2003;4:1191–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Jameson SC. Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2002;2:547–56.PubMedGoogle Scholar
  10. 10.
    Masopust D, Kaech SM, Wherry EJ, Ahmed R. The role of programming in memory T-cell development. Curr Opin Immunol 2004;16:217–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Becker TC, Wherry EJ, Boone D, Murali-Krishna K, Antia R, Ma A, Ahmed R. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 2002;195:1541–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Judge AD, Zhang X, Fujii H, Surh CD, Sprent J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 2002;196:935–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Guillaume S, Tuosto L, Tanchot C, Di Bartolo V, Acuto O, Rocha B. Proximal changes in signal transduction that modify CD8+ T cell responsiveness in vivo. Eur J Immunol 2003;33:2551–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Kersh EN, Kaech SM, Onami TM, Moran M, Wherry EJ, Miceli MC, Ahmed R. TCR signal transduction in antigen-specific memory CD8 T cells. J Immunol 2003;170:5455–63.PubMedGoogle Scholar
  15. 15.
    Slifka MK, Whitton JL. Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J Immunol 2000;164:208–16.PubMedGoogle Scholar
  16. 16.
    Badovinac VP, Corbin GA, Harty JT. Cutting edge: OFF cycling of TNF production by antigen-specific CD8+ T cells is antigen independent. J Immunol 2000;165:5387–91.PubMedGoogle Scholar
  17. 17.
    Kristensen NN, Christensen JP, Thomsen AR. High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development. J Gen Virol 2002;83:2123–33.PubMedGoogle Scholar
  18. 18.
    Agarwal, S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 1998;9:765–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol 2000;1:47–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Veiga-Fernandes H, Rocha B. High expression of active CDK6 in the cytoplasm of CD8 memory cells favors rapid division. Nat Immunol 2004;5:31–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Adimoolam S, Ford JM. p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair (Amst) 2003;2:947–54.CrossRefGoogle Scholar
  22. 22.
    Lieber, MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003;4:712–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu L, Parekh-Olmedo H, Kmiec EB. The development and regulation of gene repair. Nat Rev Genet 2003;4:679–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Doherty PC, Christensen JP. Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 2000;18:561–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Oxenius AR, Zinkernagel M, Hengartner H. CD4+ T-cell induction and effector functions: a comparison of immunity against soluble antigens and viral infections. Adv Immunol 1998;70:313–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998;393:474–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998;393:480–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998;393:478–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991–1045.PubMedGoogle Scholar
  30. 30.
    Lanzavecchia A. Immunology licence to kill. Nature 1998;393:413–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002;296:298–300.PubMedCrossRefGoogle Scholar
  32. 32.
    Kalams SA, Walker BD. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 1998;188:2199–204.PubMedCrossRefGoogle Scholar
  33. 33.
    Welsh RM. Assessing CD8 T cell number and dysfunction in the presence of antigen. J Exp Med 2001;193:F19–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998;188:2205–13.PubMedCrossRefGoogle Scholar
  35. 35.
    Fuller MJ, Khanolkar A, Tebo AE, Zajac AJ. Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. J Immunol 2004;172:4204–14.PubMedGoogle Scholar
  36. 36.
    Bourgeois C, Veiga-Fernandes H, Joret AM, Rocha B, Tanchot C. CD8 lethargy in the absence of CD4 help. Eur J Immunol 2002;32:2199–207.PubMedCrossRefGoogle Scholar
  37. 37.
    Belz GT Wodarz D, Diaz G, Nowak MA, Doherty PC. Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol 2002;76:12388–93CrossRefGoogle Scholar
  38. 38.
    Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003;421:852–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 2003;300:339–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory Science 2003;300:337–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Khanolkar A, Fuller MJ, Zajac AJ. CD4 T cell-dependent CD8 T cell maturation. J Immunol 2004;172:2834–44.PubMedGoogle Scholar
  42. 42.
    Locksley RM, Reiner SL, Hatam F, Littman DR, Killeen N. Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 1993;261:1448–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Tyznik AJ, Sun JC, Bevan MJ. The CD8 population in CD4-deficient mice is heavily contaminated with MHC class II-restricted T cells. J Exp Med 2004;199:559–65.PubMedCrossRefGoogle Scholar
  44. 44.
    Sun JC, Williams MA, Bevan MJ. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 2004;5:927–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Marzo AL, Vezys V, Klonowski KD, Lee SJ, Muralimohan G, Moore M, Tough DF, Lefrancois L. Fully functional memory CD8 T cells in the absence of CD4 T cells. J Immunol 2004;173:969–75.PubMedGoogle Scholar
  46. 46.
    Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271:12687–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, Yagita H. Nature’s TRAIL–on a path to cancer immunotherapy. Immunity 2003;18:1–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang XR, Zhang LY, Devadas S, Li L, Keegan AD, Shi YF. Reciprocal expression of TRAIL and CD95L in Th1 and Th2 cells: role of apoptosis in T helper subset differentiation. Cell Death Differ 2003;10:203–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Martinez-Lorenzo MJ, Alava MA, Gamen S, Kim KJ, Chuntharapai A, Pineiro A, Naval J, Anel A. Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur J Immunol 1998;28:2714–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, Griffith TS, Green DR, Schoenberger SP. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 2005;434:88–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol 2006;7:475–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Badovinac VP, Messingham KA, Griffith TS, Harty JT. TRAIL deficiency delays, but does not prevent, erosion in the quality of “helpless” memory CD8 T cells. J Immunol 2006;177:999–1006.PubMedGoogle Scholar
  53. 53.
    Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998;16:111–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1994;1:167–78.PubMedCrossRefGoogle Scholar
  55. 55.
    Borrow P, Tishon A, Lee S, Xu J, Grewal IS, Oldstone MB, Flavell RA. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J Exp Med 1996;183:2129–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Borrow P, Tough DF, Eto D, Tishon A, Grewal IS, Sprent J, Flavell RA, Oldstone MB. CD40 ligand-mediated interactions are involved in the generation of memory CD8(+) cytotoxic T lymphocytes (CTL) but are not required for the maintenance of CTL memory following virus infection. J Virol 1998;72:7440–9.PubMedGoogle Scholar
  57. 57.
    Noelle RJ. CD40 and its ligand in host defense. Immunity 1996;4:415–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Thomsen AR, Nansen A, Christensen JP, Andreasen SO, Marker O. CD40 ligand is pivotal to efficfient control of virus replication in mice infected with lymphocytic choriomeningitis virus. J Immunol 1998;161:4583–90.PubMedGoogle Scholar
  59. 59.
    Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 2002;297:2060–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Sun JC, Bevan MJ. Cutting edge: long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J Immunol 2004;172:3385–9.PubMedGoogle Scholar
  61. 61.
    Lee BO, Hartson L, Randall TD. CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment, J Exp Med 2003;198:1759–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Hamilton SE, Tvinnereim AR, Harty JT. Listeria monocytogenes infection overcomes the requirement for CD40 ligand in exogenous antigen presentation to CD8(+) T cells. J Immunol 2001;167:5603–9.PubMedGoogle Scholar
  63. 63.
    Williams MA, Tyznik AJ, Bevan M. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006;441:890–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Williams MA, Holmes BJ, Sun JC, Bevan MJ. Developing and maintaining protective CD8+ memory T cells. Immunol Rev 2006;211:146–53.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Aaruni Khanolkar
    • 1
  • Vladimir P. Badovinac
    • 1
  • John T. Harty
    • 1
    • 2
  1. 1.Department of MicrobiologyUniversity of IowaIowa CityUSA
  2. 2.Interdisciplinary Graduate Program in ImmunologyUniversity of IowaIowa CityUSA

Personalised recommendations