Advertisement

Immunologic Research

, Volume 39, Issue 1–3, pp 115–127 | Cite as

The regulation of dendritic cell function by calcium-signaling and its inhibition by microbial pathogens

  • S. F. Connolly
  • D. J. Kusner
Article

Abstract

Dendritic cells (DC) are the sentinels of the immune system, linking innate with adaptive responses. The functional responses of DC are subject to complex regulation and serve as targets for pathogens. Ca2+-mediated signal transduction pathways serve a central regulatory role in DC responses to diverse antigens, including TLR ligands, intact bacteria, and microbial toxins. This review summarizes the major mechanisms of Ca2+-signaling that DC utilize to regulate maturation and antigen presentation, including a Ca2+-calmodulin (CaM)-CaM kinase II pathway that is localized to phagosomes and is targeted by the human intracellular pathogen, Mycobacterium tuberculosis. Restoration of functional Ca2+ signaling in DC may provide a novel mechanism to enhance therapy and promote vaccine efficacy to infectious diseases, including tuberculosis.

Keywords

Calmodulin Phagosome Macrophage Ca2+/Calmodulin Protein Kinase II Mycobacterium tuberculosis Innate immunity Antigen presentation MHC class II Signal transduction Infectious disease 

References

  1. 1.
    Hardingham GE, Bading H. Calcium as a versatile second messenger in the control of gene expression. Microsc Res Tech 1999;46:348–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Hook SS, Means AR. Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 2001;41:471–505.PubMedCrossRefGoogle Scholar
  3. 3.
    Hudmon A, Schulman H. Structure–function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 2002;364:593–611.PubMedCrossRefGoogle Scholar
  4. 4.
    Hudmon A, Schulman H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 2002;71:473–510.PubMedCrossRefGoogle Scholar
  5. 5.
    Means AR. Regulatory cascades involving calmodulin-dependent protein kinases. Mol Endocrinol 2000;14:4–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson ME. Calmodulin kinase signaling in heart: an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther 2005;106:39–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Merrill MA, Chen Y, Strack S, Hell JW. Activity-driven postsynaptic translocation of CaMKII. Trends Pharmacol Sci 2005;26:645–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Young KW, Nahorski SR. Sphingosine 1-phosphate: a Ca2+ release mediator in the balance. Cell Calcium 2002;32:335–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Fujisawa H. Regulation of the activities of multifunctional Ca2+/calmodulin-dependent protein kinases. J Biochem (Tokyo) 2001;129:193–99.Google Scholar
  10. 10.
    Liu H, Grundstrom T. Calcium regulation of GM-CSF by calmodulin-dependent kinase II phosphorylation of Ets1. Mol Biol Cell 2002;13:4497–507.PubMedCrossRefGoogle Scholar
  11. 11.
    Malik ZA, Iyer SS, Kusner DJ. Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J Immunol 2001;166:3392–401.PubMedGoogle Scholar
  12. 12.
    Mishra S, Mishra JP, Gee K, McManus DC, LaCasse EC, Kumar A. Distinct role of calmodulin and calmodulin-dependent protein kinase-II in lipopolysaccharide and tumor necrosis factor-alpha-mediated suppression of apoptosis and antiapoptotic c-IAP2 gene expression in human monocytic cells. J Biol Chem 2005;280:37536–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Mukhopadhyay S, Peiser L, Gordon S. Activation of murine macrophages by Neisseria meningitidis and IFN-gamma in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. J Leukoc Biol 2004;76:577–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Rojas-Espinosa O, Dannenberg AM Jr, Sternberger LA, Tsuda T. The role of cathepsin D in the pathogenesis of tuberculosis. A histochemical study employing unlabeled antibodies and the peroxidase-antiperoxidase complex. Am J Pathol 1974;74:1–17.PubMedGoogle Scholar
  15. 15.
    Satonaka H, Suzuki E, Nishimatsu H, Oba S, Takeda R, Goto A, Omata M, Fujita T, Nagai R, Hirata Y. Calcineurin promotes the expression of monocyte chemoattractant protein-1 in vascular myocytes and mediates vascular inflammation. Circ Res 2004;94:693–700.PubMedCrossRefGoogle Scholar
  16. 16.
    Vergne I, Chua J, Deretic V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 2003;198:653–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Lyakh LA, Koski GK, Telford W, Gress RE, Cohen PA, Rice NR. Bacterial lipopolysaccharide, TNF-alpha, and calcium ionophore under serum-free conditions promote rapid dendritic cell-like differentiation in CD14+ monocytes through distinct pathways that activate NK-kappa B. J Immunol 2000;165:3647–55.PubMedGoogle Scholar
  18. 18.
    Yadav M, Clark L, Schorey JS. Macrophage’s proinflammatory response to a mycobacterial infection is dependent on sphingosine kinase-mediated activation of phosphatidylinositol phospholipase C, protein kinase C, ERK1/2, and phosphatidylinositol 3-kinase. J Immunol 2006;176:5494–503.PubMedGoogle Scholar
  19. 19.
    Rubartelli A, Poggi A, Zocchi MR. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur J Immunol 1997;27:1893–900.PubMedCrossRefGoogle Scholar
  20. 20.
    Czerniecki BJ, Carter C, Rivoltini L, Koski GK, Kim HI, Weng DE, et al. Calcium ionophore-treated peripheral blood monocytes and dendritic cells rapidly display characteristics of activated dendritic cells. J Immunol 1997;159:3823–37.PubMedGoogle Scholar
  21. 21.
    Koski GK, Schwartz GN, Weng DE, Czerniecki BJ, Carter C, Gress RE, et al. Calcium mobilization in human myeloid cells results in acquisition of individual dendritic cell-like characteristics through discrete signaling pathways. J Immunol 1999;163:82–92.PubMedGoogle Scholar
  22. 22.
    Koski GK, Schwartz GN, Weng DE, Gress RE, Engels FH, Tsokos M, et al. Calcium ionophore-treated myeloid cells acquire many dendritic cell characteristics independent of prior differentiation state, transformation status, or sensitivity to biologic agents. Blood 1999;94:1359–71.PubMedGoogle Scholar
  23. 23.
    Dauer M, Obermaier B, Herten J, Haerle C, Pohl K, Rothenfusser S, et al. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol 2003;170:4069–76.PubMedGoogle Scholar
  24. 24.
    St Louis DC, Woodcock JB, Franzoso G, Blair PJ, Carlson LM, Murillo M, et al. Evidence for distinct intracellular signaling pathways in CD34+ progenitor to dendritic cell differentiation from a human cell line model. J Immunol 1999;162:3237–48.Google Scholar
  25. 25.
    Hsu S, O’Connell PJ, Klyachko VA, Badminton MN, Thomson AW, Jackson MB, et al. Fundamental Ca2+ signaling mechanisms in mouse dendritic cells: CRAC is the major Ca2+ entry pathway. J Immunol 2001;166:6126–33.Google Scholar
  26. 26.
    Poggi A, Rubartelli A, Zocchi MR. Involvement of dihydropyridine-sensitive calcium channels in human dendritic cell function. Competition by HIV-1 Tat. J Biol Chem 1998;273:7205–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK. Calcium signaling through phospholipase C activates dendritic cells to mature and is necessary for the activation and maturation of dendritic cells induced by diverse agonists. Clin Diagn Lab Immunol 2004;11:77–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Watkins SC, Salter RD. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 2005;23:309–18.PubMedCrossRefGoogle Scholar
  29. 29.
    Colbran RJ, Brown AM. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr Opin Neurobiol 2004;14:318–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Griffith LC, Lu CS, Sun XX. CaMKII, an enzyme on the move: regulation of temporospatial localization. Mol Interv 2003;3:386–403.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang H, Storm DR. Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system. Mol Pharmacol 2003;63:463–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Mauceri D, Cattabeni F, Di Luca M, Gardoni F. Calcium/calmodulin-dependent protein kinase II phosphorylation drives synapse-associated protein 97 into spines. J Biol Chem 2004;279:23813–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Bayer KU, Schulman H. Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 2001;289:917–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Sakagami H, Kamata A, Nishimura H, Kasahara J, Owada Y, Takeuchi Y, et al. Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur J Neurosci 2005;22:2697–707.PubMedCrossRefGoogle Scholar
  35. 35.
    Tsui J, Inagaki M, Schulman H. Calcium/calmodulin-dependent protein kinase II (CaMKII) localization acts in concert with substrate targeting to create spatial restriction for phosphorylation. J Biol Chem 2005;280:9210–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Strack S, Robison AJ, Bass MA, Colbran RJ. Association of calcium/calmodulin-dependent kinase II with developmentally regulated splice variants of the postsynaptic density protein densin-180. J Biol Chem 2000;275:25061–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Bui JD, Calbo S, Hayden-Martinez K, Kane LP, Gardner P, Hedrick SM. A role for CaMKII in T cell memory. Cell 2000;100:457–67.PubMedCrossRefGoogle Scholar
  38. 38.
    Lin MY, Zal T, Ch’en IL, Gascoigne NR, Hedrick SM. A pivotal role for the multifunctional calcium/calmodulin-dependent protein kinase II in T cells: from activation to unresponsiveness. J Immunol 2005;174:5583–92.PubMedGoogle Scholar
  39. 39.
    McGargill MA, Sharp LL, Bui JD, Hedrick SM, Calbo S. Active Ca2+/calmodulin-dependent protein kinase II gamma B impairs positive selection of T cells by modulating TCR signaling. J Immunol 2005;175:656–64.PubMedGoogle Scholar
  40. 40.
    Nair JS, DaFonseca CJ, Tjernberg A, Sun W, Darnell JE Jr, Chait BT, et al. Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-gamma. Proc Natl Acad Sci USA 2002;99:5971–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Mishra JP, Mishra S, Gee K, Kumar A. Differential involvement of calmodulin-dependent protein kinase II-activated AP-1 and c-Jun N-terminal kinase-activated EGR-1 signaling pathways in tumor necrosis factor-alpha and lipopolysaccharide-induced CD44 expression in human monocytic cells. J Biol Chem 2005;280:26825–37.PubMedCrossRefGoogle Scholar
  42. 42.
    Jenkins MK, Khoruts A, Ingulli E, Mueller DL, McSorley SJ, Reinhardt RL, et al. In vivo activation of antigen-specific CD4 T cells. Annu Rev Immunol 2001;19:23–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Osawa Y, Lee HT, Hirshman CA, Xu D, Emala CW. Lipopolysaccharide-induced sensitization of adenylyl cyclase activity in murine macrophages. Am J Physiol Cell Physiol 2006;290:C143–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Villard J, Masternak K, Lisowska-Grospierre B, Fischer A, Reith W. MHC class II deficiency: a disease of gene regulation. Medicine (Baltimore) 2001;80:405–18.CrossRefGoogle Scholar
  45. 45.
    LeibundGut-Landmann S, Waldburger JM, Reis e Sousa C, Acha-Orbea H, Reith W. MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nat Immunol 2004;5:899–908.PubMedCrossRefGoogle Scholar
  46. 46.
    Ackerman AL, Cresswell P. Regulation of MHC class I transport in human dendritic cells and the dendritic-like cell line KG-1. J Immunol 2003;170:4178–88.PubMedGoogle Scholar
  47. 47.
    Stendahl O, Krause KH, Krischer J, Jerstrom P, Theler JM, Clark RA, et al. Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science 1994;265:1439–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 2006;440:808–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Greenberg S, Grinstein S. Phagocytosis and innate immunity. Curr Opin Immunol 2002;14:136–45.PubMedCrossRefGoogle Scholar
  50. 50.
    Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol 2002;20:825–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Dascher CC, Hiromatsu K, Xiong X, Sugita M, Buhlmann JE, Dodge IL, et al. Conservation of CD1 intracellular trafficking patterns between mammalian species. J Immunol 2002;169:6951–58.PubMedGoogle Scholar
  52. 52.
    Delamarre L, Holcombe H, Mellman I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. J Exp Med 2003;198:111–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 2003;425:397–402.PubMedCrossRefGoogle Scholar
  54. 54.
    Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A, et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 2003;425:402–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Turley SJ, Inaba K, Garrett WS, Ebersold M, Unternaehrer J, Steinman RM, et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 2000;288:522–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Kusner DJ. Mechanisms of mycobacterial persistence in tuberculosis. Clin Immunol 2005;114:239–47.PubMedCrossRefGoogle Scholar
  57. 57.
    Russell DG, Mwandumba HC, Rhoades EE. Mycobacterium and the coat of many lipids. J Cell Biol 2002;158:421–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Malik ZA, Denning GM, Kusner DJ. Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J Exp Med 2000;191:287–302.PubMedCrossRefGoogle Scholar
  59. 59.
    Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 2001;154:631–644.PubMedCrossRefGoogle Scholar
  60. 60.
    Malik ZA, Thompson CR, Hashimi S, Porter B, Iyer SS, Kusner DJ. Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J Immunol 2003;170:2811–5.PubMedGoogle Scholar
  61. 61.
    Thompson CR, Iyer SS, Melrose N, VanOosten R, Johnson K, Pitson SM, et al. Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: inhibition of SK1 translocation by Mycobacterium tuberculosis. J Immunol 2005;174:3551–61.PubMedGoogle Scholar
  62. 62.
    Kusner DJ, Adams J. ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol 2000;164:379–88.PubMedGoogle Scholar
  63. 63.
    Kusner DJ, Barton JA. ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J Immunol 2001;167:3308–15.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Medicine, The Graduate Program in ImmunologyThe University of IowaIowa CityUSA
  2. 2.Division of Infectious Diseases, Department of Internal MedicineUniversity of IowaIowa CityUSA

Personalised recommendations