Immunologic Research

, Volume 40, Issue 1, pp 35–48 | Cite as

Understanding the multiple functions of Gr-1+ cell subpopulations during microbial infection

  • Charlotte E. Egan
  • Woraporn Sukhumavasi
  • Allison L. Bierly
  • Eric Y. Denkers


The murine cell surface determinant Gr-1 is expressed at high level on neutrophils. Depletion of polymorphonuclear leukocytes with anti-Gr-1+ monoclonal antibody results in increased susceptibility and dysregulated immunity to many microbial pathogens, a finding widely interpreted to indicate the importance of neutrophils during infection. Yet, in recent years it has become clear that additional cell types express the Gr-1 determinant, including dendritic cell and monocyte subpopulations. In this review, we evaluate current knowledge on the functional aspects of Gr-1+ cell populations. We focus on infection with the opportunistic protozoan Toxoplasma gondii, a case where host survival depends on an intact Gr-1+ cell population.


Neutrophil Dendritic cell Monocyte Innate immunity Infection 


  1. 1.
    Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol 2001;13:114–9.PubMedGoogle Scholar
  2. 2.
    Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 2006;311:17–58.PubMedGoogle Scholar
  3. 3.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953–64.PubMedGoogle Scholar
  4. 4.
    Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989;74:2527–34.PubMedGoogle Scholar
  5. 5.
    Tacke F, Randolph GJ. Migratory fate and differentiation of blood monocyte subsets. Immunobiology 2006;211:609–18.PubMedGoogle Scholar
  6. 6.
    Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003;19:71–82.PubMedGoogle Scholar
  7. 7.
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3:23–35.PubMedGoogle Scholar
  8. 8.
    Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, Pearce EJ, Wynn TA. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of l-arginine metabolism. J Immunol 2001;167:6533–44.PubMedGoogle Scholar
  9. 9.
    Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992;176:287–92.PubMedGoogle Scholar
  10. 10.
    Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993;259:1739–42.PubMedGoogle Scholar
  11. 11.
    Qu C, Edwards EW, Tacke F, Angeli V, Llodra J, Sanchez-Schmitz G, Garin A, Haque NS, Peters W, van Rooijen N, Sanchez-Torres C, Bromberg J, Charo IF, Jung S, Lira SA, Randolph GJ. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 2004;200:1231–41.PubMedGoogle Scholar
  12. 12.
    Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 1999;11:753–61.PubMedGoogle Scholar
  13. 13.
    Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2:151–61.PubMedGoogle Scholar
  14. 14.
    Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN, Suzuki F. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 2004;21:215–26.PubMedGoogle Scholar
  15. 15.
    Romani L, Mencacci A, Cenci E, Del Sero G, Bistoni F, Puccetti P. An immunoregulatory role for neutrophils in CD4+ T helper subset selection in mice with candidiasis. J Immunol 1997;158:2356–62.PubMedGoogle Scholar
  16. 16.
    Romani L, Mencacci A, Cenci E, Spaccapelo R, Del Sero G, Nicoletti I, Trinchieri G, Bistoni F, Puccetti P. Neutrophil production of IL-12 and IL-10 in candidiasis and efficacy of IL-12 therapy in neutropenic mice. J Immunol 1997;158:5349–56.PubMedGoogle Scholar
  17. 17.
    Fleming TJ, Fleming ML, Malek TR. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6–8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 1993;151:2399–408.PubMedGoogle Scholar
  18. 18.
    Nagendra S, Schlueter AJ. Absence of cross-reactivity between murine Ly-6C, Ly-6G. Cytometry A 2004;58:195–200.PubMedGoogle Scholar
  19. 19.
    Nakano H, Yanagita M, Gunn MD. CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001;194:1171–8.PubMedGoogle Scholar
  20. 20.
    Kusmartsev SA, Li Y, Chen SH. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 2000;165:779–85.PubMedGoogle Scholar
  21. 21.
    Hill D, Dubey JP. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect 2002;8:634–40.PubMedGoogle Scholar
  22. 22.
    Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J Parasitol 1998;28:1019–24.PubMedGoogle Scholar
  23. 23.
    Lambert H, Hitziger N, Dellacasa I, Svensson M, Barragan A. Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell Microbiol 2006;8:1611–23.PubMedGoogle Scholar
  24. 24.
    Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, Tardieux I. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 2006;107:309–16.PubMedGoogle Scholar
  25. 25.
    Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A. Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 1992;149:175–80.PubMedGoogle Scholar
  26. 26.
    Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci USA 1993;90:6115–9.PubMedGoogle Scholar
  27. 27.
    Gazzinelli RT, Wysocka M, Hayashi S, Denkers EY, Hieny S, Caspar P, Trinchieri G, Sher A. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 1994;153:2533–43.PubMedGoogle Scholar
  28. 28.
    Gazzinelli RT, Denkers EY. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 2006;6:895–906.PubMedGoogle Scholar
  29. 29.
    Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denkers EY, Medzhitov R, Sher A. Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol 2002;168:5997–6001.PubMedGoogle Scholar
  30. 30.
    Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 2005;308:1626–9.PubMedGoogle Scholar
  31. 31.
    Yarovinsky F, Kanzler H, Hieny S, Coffman RL, Sher A. Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response. Immunity 2006;25:655–64.PubMedGoogle Scholar
  32. 32.
    Mun HS, Aosai F, Norose K, Chen M, Piao LX, Takeuchi O, Akira S, Ishikura H, Yano A. TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection. Int Immunol 2003;15:1081–7.PubMedGoogle Scholar
  33. 33.
    Furuta T, Kikuchi T, Akira S, Watanabe N, Yoshikawa Y. Roles of the small intestine for induction of toll-like receptor 4-mediated innate resistance in naturally acquired murine toxoplasmosis. Int Immunol 2006;18:1655–62.PubMedGoogle Scholar
  34. 34.
    Minns LA, Menard LC, Foureau DM, Darche S, Ronet C, Mielcarz DW, Buzoni-Gatel D, Kasper LH. TLR9 is required for the gut-associated lymphoid tissue response following oral infection of Toxoplasma gondii. J Immunol 2006;176:7589–97.PubMedGoogle Scholar
  35. 35.
    Del Rio L, Butcher BA, Bennouna S, Hieny S, Sher A, Denkers EY. Toxoplasma gondii triggers myeloid differentiation factor 88-dependent IL-12 and chemokine ligand 2 (monocyte chemoattractant protein 1) responses using distinct parasite molecules and host receptors. J Immunol 2004;172:6954–60.PubMedGoogle Scholar
  36. 36.
    Yarovinsky F, Andersen JF, King LR, Caspar P, Aliberti J, Golding H, Sher A. Structural determinants of the anti-HIV activity of a CCR5 antagonist derived from Toxoplasma gondii. J Biol Chem 2004;279:53635–42.PubMedGoogle Scholar
  37. 37.
    Alexander J, Hunter CA. Immunoregulation during toxoplasmosis. Chem Immunol 1998;70:81–102.PubMedGoogle Scholar
  38. 38.
    Gaddi PJ, Yap GS. Cytokine regulation of immunopathology in toxoplasmosis. Immunol Cell Biol 2007;85:155–9.PubMedGoogle Scholar
  39. 39.
    Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 1988;240:516–8.PubMedGoogle Scholar
  40. 40.
    Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM, Wilson M, Wynn TA, Kamanaka M, Flavell RA, Sher A. Conventional T-bet+Foxp3- Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J Exp Med 2007;204:273–83.PubMedGoogle Scholar
  41. 41.
    Neyer LE, Grunig G, Fort M, Remington JS, Rennick D, Hunter CA. Role of interleukin-10 in regulation of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii. Infect Immun 1997;65:1675–82.PubMedGoogle Scholar
  42. 42.
    Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kuhn R, Muller W, Trinchieri G, Sher A. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol 1996;157:798–805.PubMedGoogle Scholar
  43. 43.
    Gazzinelli RT, Hayashi S, Wysocka M, Carrera L, Kuhn R, Muller W, Roberge F, Trinchieri G, Sher A. Role of IL-12 in the initiation of cell mediated immunity by Toxoplasma gondii and its regulation by IL-10 and nitric oxide. J Eukaryot Microbiol 1994;41:9S.PubMedGoogle Scholar
  44. 44.
    Liesenfeld O, Kosek J, Remington JS, Suzuki Y. Association of CD4+ T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med 1996;184:597–607.PubMedGoogle Scholar
  45. 45.
    Stephens-Romero SD, Mednick AJ, Feldmesser M. The pathogenesis of fatal outcome in murine pulmonary aspergillosis depends on the neutrophil depletion strategy. Infect Immun 2005;73:114–25.PubMedGoogle Scholar
  46. 46.
    Jensen J, Warner T, Balish E. The role of phagocytic cells in resistance to disseminated candidiasis in granulocytopenic mice. J Infect Dis 1994;170:900–5.PubMedGoogle Scholar
  47. 47.
    Barteneva N, Theodor I, Peterson EM, de la Maza LM. Role of neutrophils in controlling early stages of a Chlamydia trachomatis infection. Infect Immun 1996;64:4830–3.PubMedGoogle Scholar
  48. 48.
    Mednick AJ, Feldmesser M, Rivera J, Casadevall A. Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis. Eur J Immunol 2003;33:1744–53.PubMedGoogle Scholar
  49. 49.
    Asgharpour A, Gilchrist C, Baba D, Hamano S, Houpt E. Resistance to intestinal Entamoeba histolytica infection is conferred by innate immunity and Gr-1+ cells. Infect Immun 2005;73:4522–9.PubMedGoogle Scholar
  50. 50.
    Sjostedt A, Conlan JW, North RJ. Neutrophils are critical for host defense against primary infection with the facultative intracellular bacterium Francisella tularensis in mice and participate in defense against reinfection. Infect Immun 1994;62:2779–83.PubMedGoogle Scholar
  51. 51.
    Tateda K, Moore TA, Deng JC, Newstead MW, Zeng X, Matsukawa A, Swanson MS, Yamaguchi K, Standiford TJ. Early recruitment of neutrophils determines subsequent T1/T2 host responses in a murine model of Legionella pneumophila pneumonia. J Immunol 2001;166:3355–61.PubMedGoogle Scholar
  52. 52.
    Rousseau D, Demartino S, Ferrua B, Michiels JF, Anjuere F, Fragaki K, Le Fichoux Y, Kubar J. In vivo involvement of polymorphonuclear neutrophils in Leishmania infantum infection. BMC Microbiol 2001;1:17.PubMedGoogle Scholar
  53. 53.
    Tacchini-Cottier F, Zweifel C, Belkaid Y, Mukankundiye C, Vasei M, Launois P, Milon G, Louis JA. An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J Immunol 2000;165:2628–36.PubMedGoogle Scholar
  54. 54.
    Chen L, Zhang ZH, Watanabe T, Yamashita T, Kobayakawa T, Kaneko A, Fujiwara H, Sendo F. The involvement of neutrophils in the resistance to Leishmania major infection in susceptible but not in resistant mice. Parasitol Int 2005;54:109–18.PubMedGoogle Scholar
  55. 55.
    Appelberg R, Castro AG, Silva MT. Neutrophils as effector cells of T-cell-mediated, acquired immunity in murine listeriosis. Immunology 1994;83:302–7.PubMedGoogle Scholar
  56. 56.
    Conlan JW, North RJ. Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J Exp Med 1994;179:259–68.PubMedGoogle Scholar
  57. 57.
    Czuprynski CJ, Brown JF, Maroushek N, Wagner RD, Steinberg H. Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection. J Immunol 1994;152:1836–46.PubMedGoogle Scholar
  58. 58.
    Czuprynski CJ, Brown JF, Wagner RD, Steinberg H. Administration of antigranulocyte monoclonal antibody RB6-8C5 prevents expression of acquired resistance to Listeria monocytogenes infection in previously immunized mice. Infect Immun 1994;62:5161–3.PubMedGoogle Scholar
  59. 59.
    Rogers HW, Unanue ER. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect Immun 1993;61:5090–6.PubMedGoogle Scholar
  60. 60.
    Saunders BM, Cheers C. Intranasal infection of beige mice with Mycobacterium avium complex: role of neutrophils and natural killer cells. Infect Immun 1996;64:4236–41.PubMedGoogle Scholar
  61. 61.
    Pedrosa J, Saunders BM, Appelberg R, Orme IM, Silva MT, Cooper AM. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect Immun 2000;68:577–83.PubMedGoogle Scholar
  62. 62.
    Chen L, Zhang Z, Sendo F. Neutrophils play a critical role in the pathogenesis of experimental cerebral malaria. Clin Exp Immunol 2000;120:125–33.PubMedGoogle Scholar
  63. 63.
    Conlan JW. Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica. Infect Immun 1997;65:630–5.PubMedGoogle Scholar
  64. 64.
    Sayles PC, Johnson LL. Exacerbation of toxoplasmosis in neutrophil-depleted mice. Nat Immun 1996;15:249–58.PubMedGoogle Scholar
  65. 65.
    Bliss SK, Gavrilescu LC, Alcaraz A, Denkers EY. Neutrophil depletion during Toxoplasma gondii infection leads to impaired immunity and lethal systemic pathology. Infect Immun 2001;69:4898–905.PubMedGoogle Scholar
  66. 66.
    Chen L, Watanabe T, Watanabe H, Sendo F. Neutrophil depletion exacerbates experimental Chagas’ disease in BALB/c, but protects C57BL/6 mice through modulating the Th1/Th2 dichotomy in different directions. Eur J Immunol 2001;31:265–75.PubMedGoogle Scholar
  67. 67.
    Bliss SK, Zhang Y, Denkers EY. Murine neutrophil stimulation by Toxoplasma gondii antigen drives high level production of IFN-gamma-independent IL-12. J Immunol 1999;163:2081–8.PubMedGoogle Scholar
  68. 68.
    Scharton-Kersten TM, Wynn TA, Denkers EY, Bala S, Grunvald E, Hieny S, Gazzinelli RT, Sher A. In the absence of endogenous IFN-gamma, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J Immunol 1996;157:4045–54.PubMedGoogle Scholar
  69. 69.
    Denkers EY, Gazzinelli RT. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 1998;11:569–88.PubMedGoogle Scholar
  70. 70.
    Romani L, Bistoni F, Puccetti P. Initiation of T-helper cell immunity to Candida albicans by IL-12: the role of neutrophils. Chem Immunol 1997;68:110–35.PubMedCrossRefGoogle Scholar
  71. 71.
    Matsuzaki J, Tsuji T, Chamoto K, Takeshima T, Sendo F, Nishimura T. Successful elimination of memory-type CD8+ T cell subsets by the administration of anti-Gr-1 monoclonal antibody in vivo. Cell Immunol 2003;224:98–105.PubMedGoogle Scholar
  72. 72.
    Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006;7:311–7.PubMedGoogle Scholar
  73. 73.
    Robben PM, LaRegina M, Kuziel WA, Sibley LD. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J Exp Med 2005;201:1761–9.PubMedGoogle Scholar
  74. 74.
    Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003;19:59–70.PubMedGoogle Scholar
  75. 75.
    Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 2000;96:3838–46.PubMedGoogle Scholar
  76. 76.
    Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 2001;166:5398–406.PubMedGoogle Scholar
  77. 77.
    Voisin MB, Buzoni-Gatel D, Bout D, Velge-Roussel F. Both expansion of regulatory GR1+ CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun 2004;72:5487–92.PubMedGoogle Scholar
  78. 78.
    Segal AW. How neutrophils kill microbes. Annu Rev Immunol 2005;23:197–223.PubMedGoogle Scholar
  79. 79.
    Mayer-Scholl A, Averhoff P, Zychlinsky A. How do neutrophils and pathogens interact? Curr Opin Microbiol 2004;7:62–6.PubMedGoogle Scholar
  80. 80.
    Christopher MJ, Link DC. Regulation of neutrophil homeostasis. Curr Opin Hematol 2007;14:3–8.PubMedGoogle Scholar
  81. 81.
    Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 2006;6:173–82.PubMedGoogle Scholar
  82. 82.
    Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 1999;73:369–509.PubMedGoogle Scholar
  83. 83.
    Denkers EY, Del Rio L, Bennouna S. Neutrophil production of IL-12 and other cytokines during microbial infection. Chem Immunol Allergy 2003;83:95–114.PubMedGoogle Scholar
  84. 84.
    Appelberg R. Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol 2006;15:87–92.PubMedGoogle Scholar
  85. 85.
    Del Rio L, Bennouna S, Salinas J, Denkers EY. CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J Immunol 2001;167:6503–9.PubMedGoogle Scholar
  86. 86.
    Brown CR, Blaho VA, Loiacono CM. Susceptibility to experimental Lyme arthritis correlates with KC and monocyte chemoattractant protein-1 production in joints and requires neutrophil recruitment via CXCR2. J Immunol 2003;171:893–901.PubMedGoogle Scholar
  87. 87.
    Khan S, Cole N, Hume EB, Garthwaite L, Conibear TC, Miles DH, Aliwaga Y, Krockenberger MB, Willcox MD. The role of CXC chemokine receptor 2 in Pseudomonas aeruginosa corneal infection. J Leukoc Biol 2007;81:315–8.PubMedGoogle Scholar
  88. 88.
    Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001;194:519–27.PubMedGoogle Scholar
  89. 89.
    Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C, Moretto M, Khan IA. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun 2005;73:617–21.PubMedGoogle Scholar
  90. 90.
    Khan IA, Murphy PM, Casciotti L, Schwartzman JD, Collins J, Gao JL, Yeaman GR. Mice lacking the chemokine receptor CCR1 show increased susceptibility to Toxoplasma gondii infection. J Immunol 2001;166:1930–7.PubMedGoogle Scholar
  91. 91.
    Gao JL, Wynn TA, Chang Y, Lee EJ, Broxmeyer HE, Cooper S, Tiffany HL, Westphal H, Kwon-Chung J, Murphy PM. Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 1997;185:1959–68.PubMedGoogle Scholar
  92. 92.
    Wartha F, Beiter K, Normark S, Henriques-Normark B. Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol 2007;10:52–56.PubMedGoogle Scholar
  93. 93.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–5.PubMedGoogle Scholar
  94. 94.
    Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007;176:231–41.PubMedGoogle Scholar
  95. 95.
    Carlyon JA, Fikrig E. Mechanisms of evasion of neutrophil killing by Anaplasma phagocytophilum. Curr Opin Hematol 2006;13:28–33.PubMedGoogle Scholar
  96. 96.
    Laskay T, van Zandbergen G, Solbach W. Neutrophil granulocytes–Trojan horses for Leishmania major and other intracellular microbes? Trends Microbiol 2003;11:210–4.PubMedGoogle Scholar
  97. 97.
    Choi KS, Park JT, Dumler JS. Anaplasma phagocytophilum delay of neutrophil apoptosis through the p38 mitogen-activated protein kinase signal pathway. Infect Immun 2005;73:8209–18.PubMedGoogle Scholar
  98. 98.
    Scaife H, Woldehiwet Z, Hart CA, Edwards SW. Anaplasma phagocytophilum reduces neutrophil apoptosis in vivo. Infect Immun 2003;71:1995–2001.PubMedGoogle Scholar
  99. 99.
    van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, Laskay T. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 2004;173:6521–5.PubMedGoogle Scholar
  100. 100.
    Scharton-Kersten TM, Yap G, Magram J, Sher A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 1997;185:1261–73.PubMedGoogle Scholar
  101. 101.
    Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA. The neutrophil as a cellular source of chemokines. Immunol Rev 2000;177:195–203.PubMedGoogle Scholar
  102. 102.
    Denkers EY, Butcher BA, Del Rio L, Bennouna S. Neutrophils, dendritic cells and Toxoplasma. Int J Parasitol 2004;34:411–21.PubMedGoogle Scholar
  103. 103.
    Bennouna S, Denkers EY. Microbial antigen triggers rapid mobilization of TNF-alpha to the surface of mouse neutrophils transforming them into inducers of high-level dendritic cell TNF-alpha production. J Immunol 2005;174:4845–51.PubMedGoogle Scholar
  104. 104.
    Matzer SP, Baumann T, Lukacs NW, Rollinghoff M, Beuscher HU. Constitutive expression of macrophage-inflammatory protein 2 (MIP-2) mRNA in bone marrow gives rise to peripheral neutrophils with preformed MIP-2 protein. J Immunol 2001;167:4635–43.PubMedGoogle Scholar
  105. 105.
    Mason N, Aliberti J, Caamano JC, Liou HC, Hunter CA. Cutting edge: identification of c-Rel-dependent and -independent pathways of IL-12 production during infectious and inflammatory stimuli. J Immunol 2002;168:2590–4.PubMedGoogle Scholar
  106. 106.
    Bliss SK, Butcher BA, Denkers EY. Rapid recruitment of neutrophils containing prestored IL-12 during microbial infection. J Immunol 2000;165:4515–21.PubMedGoogle Scholar
  107. 107.
    Bennouna S, Bliss SK, Curiel TJ, Denkers EY. Cross-talk in the innate immune system: neutrophils instruct recruitment and activation of dendritic cells during microbial infection. J Immunol 2003;171:6052–8.PubMedGoogle Scholar
  108. 108.
    van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 2005;201:1281–92.PubMedGoogle Scholar
  109. 109.
    Megiovanni AM, Sanchez F, Robledo-Sarmiento M, Morel C, Gluckman JC, Boudaly S. Polymorphonuclear neutrophils deliver activation signals and antigenic molecules to dendritic cells: a new link between leukocytes upstream of T lymphocytes. J Leukoc Biol 2006;79:977–88.PubMedGoogle Scholar
  110. 110.
    van Gisbergen KP, Geijtenbeek TB, van Kooyk Y. Close encounters of neutrophils and DCs. Trends Immunol 2005;26:626–31.PubMedGoogle Scholar
  111. 111.
    Mordue DG, Sibley LD. A novel population of Gr-1+-activated macrophages induced during acute toxoplasmosis. J Leukoc Biol 2003;74:1015–25.PubMedGoogle Scholar
  112. 112.
    Mordue DG, Monroy F, La Regina M, Dinarello CA, Sibley LD. Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol 2001;167:4574–84.PubMedGoogle Scholar
  113. 113.
    Kusmartsev S, Gabrilovich DI. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 2002;51:293–8.PubMedGoogle Scholar
  114. 114.
    Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004;6:409–21.PubMedGoogle Scholar
  115. 115.
    Khan IA, Schwartzman JD, Matsuura T, Kasper LH. A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci USA 1997;94:13955–60.PubMedGoogle Scholar
  116. 116.
    Luft BJ, Kansas G, Engleman EG, Remington JS. Functional and quantitative alterations in T lymphocyte subpopulations in acute toxoplasmosis. J Infect Dis 1984;150:761–7.PubMedGoogle Scholar
  117. 117.
    Khan IA, Matsuura T, Kasper LH. Activation-mediated CD4+ T cell unresponsiveness during acute Toxoplasma gondii infection in mice. Int Immunol 1996;8:887–96.PubMedGoogle Scholar
  118. 118.
    Goni O, Alcaide P, Fresno M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+)immature myeloid suppressor cells. Int Immunol 2002;14:1125–34.PubMedGoogle Scholar
  119. 119.
    Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004;5:1219–26.PubMedGoogle Scholar
  120. 120.
    Naik SH, Corcoran LM, Wu L. Development of murine plasmacytoid dendritic cell subsets. Immunol Cell Biol 2005;83:563–70.PubMedGoogle Scholar
  121. 121.
    O’Keeffe M, Hochrein H, Vremec D, Caminschi I, Miller JL, Anders EM, Wu L, Lahoud MH, Henri S, Scott B, Hertzog P, Tatarczuch L, Shortman K. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 2002;196:1307–19.PubMedGoogle Scholar
  122. 122.
    Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant A, Vicari C, O’Garra A, Biron C, Briere F, Trinchieri G. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2001;2:1144–50.PubMedGoogle Scholar
  123. 123.
    Brawand P, Fitzpatrick DR, Greenfield BW, Brasel K, Maliszewski CR, De Smedt T. Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs. J Immunol 2002;169:6711–9.PubMedGoogle Scholar
  124. 124.
    Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C, Davoust J, Fay J, Palucka K. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000;165:566–72.PubMedGoogle Scholar
  125. 125.
    Allman D, Dalod M, Asselin-Paturel C, Delale T, Robbins SH, Trinchieri G, Biron CA, Kastner P, Chan S. Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 2006;108:4025–34.PubMedGoogle Scholar
  126. 126.
    Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004;5:987–95.PubMedGoogle Scholar
  127. 127.
    Soumelis V, Liu YJ. From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation. Eur J Immunol 2006;36:2286–92.PubMedGoogle Scholar
  128. 128.
    Dalod M, Salazar-Mather TP, Malmgaard L, Lewis C, Asselin-Paturel C, Briere F, Trinchieri G, Biron CA. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J Exp Med 2002;195:517–28.PubMedGoogle Scholar
  129. 129.
    Iking-Konert C, Cseko C, Wagner C, Stegmaier S, Andrassy K, Hansch GM. Transdifferentiation of polymorphonuclear neutrophils: acquisition of CD83 and other functional characteristics of dendritic cells. J Mol Med 2001;79:464–74.PubMedGoogle Scholar
  130. 130.
    Oehler L, Majdic O, Pickl WF, Stockl J, Riedl E, Drach J, Rappersberger K, Geissler K, Knapp W. Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J Exp Med 1998;187:1019–28.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Charlotte E. Egan
    • 1
  • Woraporn Sukhumavasi
    • 1
  • Allison L. Bierly
    • 1
  • Eric Y. Denkers
    • 1
  1. 1.Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUSA

Personalised recommendations