Immunologic Research

, Volume 38, Issue 1–3, pp 237–250

Adoptive transfer of antigen-specific T-cells of donor type for immunotherapy of viral infections following allogeneic hematopoietic cell transplants

  • Richard J. O’Reilly
  • Ekaterina Doubrovina
  • Deepa Trivedi
  • Aisha Hasan
  • Wouter Kollen
  • Guenther Koehne


Allogeneic marrow and cytokine-mobilized peripheral blood stem cells adequately depleted of T cells prevent acute and chronic forms of graft versus host disease in HLA-matched and non-identical hosts without any posttransplant immunosuppressive prophylaxis. Current cytoreductive regimens secure consistent durable engraftment, and full donor chimerism. The risk of relapse following such transplants in patients with AML and ALL has been low, and not different from that recorded following unmodified transplants. However, in HLA-disparate hosts the risk of infections caused by EBV, CMV, and certain fungi are increased. To address this limitation, others and we are exploring adoptive immunotherapies with in vitro generated, pathogen-specific T cells. Early clinical trials already indicate the potential of such T cells to treat and prevent life threatening diseases caused by these pathogens, particularly in recipients of T cell depleted grafts who do not require ongoing treatment with immunosuppressive agents, and therefore provide a permissive environment for the expansion and persistence of the T cells following adoptive transfer. New more predictable strategies are under development, which should allow such therapies to be broadly applicable.


Adoptive immunotherapy Transplant-associated infection 


  1. 1.
    Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968;2:1366–69.PubMedCrossRefGoogle Scholar
  2. 2.
    Antoine C, Muller S, Cant A, Cavazzana-Calvo, et al. Long-term survival and transplantation of hematopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet 2003;361:553–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Krivit W. Allogenic stem cell transplantation for the treatment of lysosomal and peroxisomal metabolic diseases. Springer Semin Immunopathol 2004;26:119–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Lucarelli G, Andreani M, Angelucci E. The cure of thalassemia by bone marrow transplantation. Blood Rev 2002;16:81–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Appelbaum FR. Allogenic hematopoietic stem cell transplantation for acute leukemia. Semin Oncol 1997;24:114–23.PubMedGoogle Scholar
  6. 6.
    Kiehl MG, Kraut L, Schwerdtfeger R, Hertenstein B, et al. Outcome of allogenic hematopoietic stem-cell transplantation in adult patients with acute lymphoblastic leukemia: no difference in related compared with unrelated transplant in first complete remission. J Clin Oncol 2004; 22:2816–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Khouri IF. Reduced-intensity regimens in allogenic stem-cell transplantation for non-hodgkin lymphoma and chronic lymphocytic leukemia. Hematol Am Soc Educ Program 2006;390–7.Google Scholar
  8. 8.
    Dreger P, Brand R, Hansz J, Milligan D, et al. Treatment-related mortality and graft-versus-leukemia activity after allogenic stem cell transplantation for chronic lymphocytic leukemia using intensity-reduced conditioning. Leukemia 2003;17:841–8.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Reilly R.J., Dupont B., Pahwa S., Grimes, E et al. Reconstitution in severe combined immunodeficiency by transplantation of marrow from an unrelated donor. N Engl J Med 1977; 297:1311–18.PubMedCrossRefGoogle Scholar
  10. 10.
    McCullough J, Perkins HA, Hansen J. The National Donor Program with emphasis on the early years. Transfusion 2006; 46:1248–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Drobyski WR, Klein J, Flomenberg N, Pietryga D, Vesole DH, Margolis DA, Keever-Taylor CA. Superior survival associated with transplantation of matched unrelated versus one-antigen-mismatched unrelated or highly human leukocyte antigen-disparate haploidentical family donor marrow grafts for the treatment of hematologic malignancies: establishing a treatment algorithm for recipients of alternative donor grafts. Blood 2002;99:806–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Mielcarek M, Martin PJ, Leisenring W, Flowers MED, et al. Graft-versus-host disease after nonmeloablative versus conventional hematopoietic stem cell transplantation. Blood 2003;102:756–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 2004;104:1923–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Reisner Y, Kapoor N, Kirkpatrick D, Pollack MS, Dupont B, Chaganti RSK, Good RA, O’Reilly RJ. Transplantation for acute leukemia with HLA-A & B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 1981;2:327–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Reisner Y, Kapoor N, Kirkpatrick D, Pollack MS, Cunningham-Rundles S, Dupont B, Hodes MZ, Good RA, O’Reilly RJ. Transplantation for severe combined immunodeficiency with HLA-A, B, D, Dr incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 1983;61:341–8.PubMedGoogle Scholar
  16. 16.
    Small T, Friedrich W, O’Reilly R. Hematopoietic cell transplantation for immunodeficiency disease. In: Blume KB, Forman SJ, Appelbaum FR, editors. Thomas’ hematopoietic cell transplantation. 3rd ed. Malden, Massachusetts: Blackwell Science, Chapter 105. 2003.Google Scholar
  17. 17.
    Friedrich W, Goldmann SF, Vetter U, et al. Immunoreconstitution in severe combined immunodeficiency after transplantation of HLA-haploidentical, T-cell depleted bone marrow. Lancet 1984;1:761–64.Google Scholar
  18. 18.
    Buckley RH, Schiff SE, Schiff RI, et al. Hematopoietic stem cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999;340:508–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Young JW, Papadopoulos E, Cunningham I, Castro-Malaspina H, et al. T cell-depleted allogeneic bone marrow transplantation in adults with acute nonlymphocytic leukemia in first remission. Blood 1992;79:3380–87.PubMedGoogle Scholar
  20. 20.
    Papadopoulos EB, Carabasi MH, Castro-Malaspina H, Childs BH, Mackinnon S, Boulad F, Gillio F, Gillio AP, Kernan NA, Small TN, Szabolcs P, Taylor J, Yahalom J, Collins NH, Bleau SA, Black PM, Heller G, O’Reilly RJ, Young JW. T cell-depleted allogeneic bone marrow transplantation as post-remission therapy for acute myelogenous leukemia: Freedom from relapse in the absence of graft-vs-host disease. Blood 1998;91(3):1083–90.PubMedGoogle Scholar
  21. 21.
    Jakubowski A, Papadopoulos E, Kernan NA, Boulad F, Castro-Malaspina HR, Collins N, Hsu K, Perales M, Small T, van den Brink M, Young J, O’Reilly RJ. Results of T cell depleted (TCD) allogenic hematopoietic stem cell transplantation (AlloHSCT) from HLA matched (HLA-M) or partially mismatched (HLA-MM) unrelated donors (URD) in patients with hematologic malignancies: sustained engraftment and low incidence of graft vs. host disease (GvHD). Blood 2006;3133:894a.Google Scholar
  22. 22.
    Small TN, Papadopoulos E, Boulad F, Black P, Castro-Malaspina H, Childs B, Collins N, George D, Gillio A, Heller G, Jakubowski A, Kernan NA, MacKinnon S, Szabolcs P, Young J, O’Reilly RJ. Comparison of immune reconstitution following unrelated and related T-cell depleted bone marrow transplantation: Effect of patient age and donor leukocyte infusions. Blood 1999;93:467–80.PubMedGoogle Scholar
  23. 23.
    Almyroudis ND, Jakubowski A, Jaffe D, Sepkowitz K, Pamer E, O’Reilly RJ, Papnicolaou GA. Predictors for persistent cytomegalovirus reactivation after T-cell-depleted allogeneic hematopoietic stem cell transplantation. Trans Infect Dis 2007; (in Press).Google Scholar
  24. 24.
    Martin PJ, Shulman HM, Schubach WH, Hansen JA, Fefer A, Miller G, Thomas ED. Fatal Epstein-Barr-virus-associated proliferation of donor B cells after treatment of acute graft-versus-host disease with a murine anti-T-cell antibody. Ann Intern Med 1984;101:310–5.PubMedGoogle Scholar
  25. 25.
    Lucas KG, Small TN, Heller G, Dupont B, O’Reilly RJ. The development of cellular immunity to Epstein-Barr virus following allogeneic bone marrow transplantation. Blood 1996;87:2594–603.PubMedGoogle Scholar
  26. 26.
    Curtis RE, Travis LB, Rowlings PA, Socie G, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: A multi-institutional study. Blood 1999;94:2208–16.PubMedGoogle Scholar
  27. 27.
    Tan LC, Gudgeon N, Annels NE, Hanasasuta P, et al. A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J Immunol 1999;162:1827–35.PubMedGoogle Scholar
  28. 28.
    Svedmyr E, Jondal M. Cytotxic effector cells specific for B cell lines transformed virus are present in patients with infectious mononucleosis. Proc Natl Acad Sci USA 1975;72:1622–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Rickinson AB, Crawford D, Epstein MA. Inhibition of the in vitro outgrowth of Epstein-Barr virus-transformed lymphocytes by thymus-dependent lymphocytes from infectious mononucleosis patients. Clin Exp Immunol 1977;28:72–9.PubMedGoogle Scholar
  30. 30.
    Purtilo DT, Okano M, Grierson HL. Immune deficiency as a risk factor in Epstein-Barr virus-induced malignant diseases. Environ Health Perspect 1990;88:225–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Papadopoulos EB, Ladanyi M, Emanuel D, Mackinnon S, Boulad F, Carabasi MH, Castro-Malaspina H, Childs BH, Gillio AP, Small TN, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994;330:1185–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998;92:1549–55.PubMedGoogle Scholar
  33. 33.
    Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996;2:551–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, Ponzoni M, Rossini S, Mavilio F, Traversari C, Bordignon C. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997;276:1719–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Haque T, Wilkie GM, Taylor C, Amlot PL, Murad P, Iley A, Dombagoda D, Britton KM, Swerdlow AJ, Crawford DH. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 2002;360:436–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Savoldo B, Huls MH, Liu Z, et al. Autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for the treatment of persistent active EBV infection. Blood 2002;100:4059–66.PubMedCrossRefGoogle Scholar
  37. 37.
    Heslop HE, Brenner MK, Rooney CM. Donor T cells to treat EBV-associated lymphoma. N Engl J Med 1994;331:679–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Gottschalk S, Ng CY, Perez M, Smith C, Sample C, Brenner M, Heslop HE, Rooney CM. An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 2001;97:835–43.PubMedCrossRefGoogle Scholar
  39. 39.
    Boeckh M, Leisenring E, Riddell S, Bowden RA, Huang M, Myerson D, et al. Late cytomegalovirus disease and mortality in recipients of allogenic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood 2003;101:407–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Ljungman P, Aschan J, Lewensohn-Fuchs I, et al. Results of different strategies for reducing cytomegalovirus-associated mortality in allogeneic stem cell transplant recipients. Transplantation 1998;66:1330–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Riddell S, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by adoptive transfer of T-cell clones. Science 1992;257:238–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995;333:1038–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Peggs K, Verfuerth S, Mackinnon S. Induction of cytomegalovirus (CMV)-specific T-cell responses using dendritic cells pulsed with CMV antigen: a novel culture system free of live CMV virions. Blood 2001;97:994–1000.PubMedCrossRefGoogle Scholar
  44. 44.
    Peggs KS, MacKinnon S. Augmentation of virus-specific immunity after hematopoietic stem cell transplantation by adoptive T-cell therapy. Human Immunol 2004;65:550–7.CrossRefGoogle Scholar
  45. 45.
    Rauser G, Einsele H, Sinzger C, Wernet D, Kuntz G, Assenmacher M, Campbell J, Topp MS. Rapid generation of combined CMV-specific CD4+ and CD8+ T-ell lines for adoptive transfer into recipients of allogeneic stem cell transplants. Blood 2004;103:3565–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Cobbold M, Khan N, Pourgheysari B, Tauro S, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. JEM 2005;202:379–86.CrossRefGoogle Scholar
  47. 47.
    Wills MR, Carmichael AJ, Mynard K, Jin X, et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T cell receptor usage of pp65-specific CTL. J Virol 1996;70:7569–79.PubMedGoogle Scholar
  48. 48.
    Elkington R, Walker S, Crough T, Menzies M, et al. Ex vivo profiling of CD8+ T-cell responses to human cytomegalovirus reveals broad and multispecific reactivies in healthy virus carriers. J Virol 2003;77:5226–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Kern F, Faulhaber N, Frommel C, Khatamzas E, Prosch S, et al. Analysis of CD8 T cell reactitivy to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur J Immunol 2000;30:1676–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Trivedi D, Williams R, O’Reilly R, Koehne G. Generation of cytomegalovirus (CMV)-specific T-lymphocytes using protein-spanning pools of PP65-derived over-lapping pentadecapeptides for adoptive immunotherapy. Blood 2005;105(7):2793–801.PubMedCrossRefGoogle Scholar
  51. 51.
    Lacey SF, Villacres MC, La Rosa C, Wang Z, Longmate J, Martinez J, Brewer JC, Mekhoubad S, Maas R, Leedom JM, Forman SJ, Zaia JA, Diamond DJ. Relative dominance of HLA-B*07 restricted CD8+ T-lymphocyte immune responses to human cytomegalovirus pp65 in persons sharing HLA-A*02 and HLA-B*07 alleles. Hum Immunol 2003;64:440–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Small TN, Papadopoulos E, Boulad F, Black P, Castro-Malaspina H, et al. Comparison of immune reconstitution following unrelated and related T-cell depleted bone marrow transplantation: Effect of patient age and donor leukocyte infusions. Blood 1999;93:467–80.PubMedGoogle Scholar
  53. 53.
    Lewin SR, Heller G, Ahang L, Rodrigues BS, Skulsky E, vanden Brink MRM, Small TN, Kernan NA, O’Reilly RJ, Ho DD, Young JW. Direct evidence for new T cell generation by patients after either T cell-depleted or unmodified allogeneic hematopoietic stem cell transplants. Blood 2002;100:2235–42.PubMedGoogle Scholar
  54. 54.
    Pelte C, Cherepnev G, Wang Y, Schoenemann C, Volk H, Kern F. Random screening of proteins of HLA-A*0201-binding nine-amino acid peptides is not sufficient for identifying CD8 T cell epitopes recognized in the context of HLA-A*0201. J Immunol 2004;172:6783–89.PubMedGoogle Scholar
  55. 55.
    Latouche JB, Sadelain M. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nature Biotechnology 2000;18:405–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Papanicolaou GA, Latouche JB, Tan C, Dupont J, Stiles J, Pamer EG, Sadelain M. Rapid expansion of cytomegalovirus-specific cytotoxic T lymphocytes by artificial antigen-presenting cells expressing a single HLA allele. Blood 2003;102:2498–505.PubMedCrossRefGoogle Scholar
  57. 57.
    Hasan A, Kollen W, Trivedi, Selvakumar A, Sadelain M, O’Reilly RJ. A panel of artificial antigen presenting cells (AAPC) permits immediate sensitization and rapid generation of virus-specific T cells of desired HLA restriction for adoptive immunotherapy. Blood 2006;3268:933a.Google Scholar
  58. 58.
    Trivedi D, Kollen W, Barnett L, Sadelain M, O’Reilly RJ. Artificial antigen-presenting cells permit selective In Vitro generation of CMV-Specific T cells of desired HLA allelic restriction for adoptive immunotherapy in recipients of HLA disparate allografts. Blood 2005;106:377a.Google Scholar
  59. 59.
    Aversa F, Terenzi A, Tabilio A, Falzetti F, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol 2005;23:3447–54.PubMedCrossRefGoogle Scholar
  60. 60.
    Perruccio K, Tosti A, Burchielli E, Topini F, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 2005;106:4397–406.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Richard J. O’Reilly
    • 1
    • 2
    • 3
  • Ekaterina Doubrovina
    • 1
    • 2
    • 3
  • Deepa Trivedi
    • 1
    • 2
    • 3
  • Aisha Hasan
    • 1
    • 2
    • 3
  • Wouter Kollen
    • 1
    • 2
    • 3
  • Guenther Koehne
    • 1
    • 2
    • 3
  1. 1.Department of PediatricsMemorial Sloan-Kettering Cancer InstituteNew YorkUSA
  2. 2.Pediatric Bone Marrow Transplant ServiceMemorial Sloan-Kettering Cancer InstituteNew YorkUSA
  3. 3.Pediatric Oncology ResearchMemorial Sloan-Kettering Cancer InstituteNew YorkUSA

Personalised recommendations