Forensic Science, Medicine and Pathology

, Volume 13, Issue 3, pp 342–349 | Cite as

Increasing the reach of forensic genetics with massively parallel sequencing

  • Bruce Budowle
  • Sarah E. Schmedes
  • Frank R. Wendt


The field of forensic genetics has made great strides in the analysis of biological evidence related to criminal and civil matters. More so, the discipline has set a standard of performance and quality in the forensic sciences. The advent of massively parallel sequencing will allow the field to expand its capabilities substantially. This review describes the salient features of massively parallel sequencing and how it can impact forensic genetics. The features of this technology offer increased number and types of genetic markers that can be analyzed, higher throughput of samples, and the capability of targeting different organisms, all by one unifying methodology. While there are many applications, three are described where massively parallel sequencing will have immediate impact: molecular autopsy, microbial forensics and differentiation of monozygotic twins. The intent of this review is to expose the forensic science community to the potential enhancements that have or are soon to arrive and demonstrate the continued expansion the field of forensic genetics and its service in the investigation of legal matters.


Forensic genetics Massively parallel sequencing Molecular autopsy Microbial forensics Monozygotic twins 


Compliance with ethical standards

The authors state that they have no conflicts of interest to declare related to this Review. As this is a Review there was no funding required for its production.


  1. 1.
    Landsteiner K. Ueber agglutinationserscheinungen normalen menschlichen. Wien Klin Wochenschr. 1901;14:1132–4.Google Scholar
  2. 2.
    Ottenberg R. Medicolegal application of human blood grouping. J Amer Hum Genet. 1932;77:682–3.Google Scholar
  3. 3.
    Jeffreys AJ, Wilson V, Thein SL. Individual-specific 'fingerprints' of human DNA. Nature. 1985;316:76–9.CrossRefGoogle Scholar
  4. 4.
    Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA 'fingerprints'. Nature. 1985;318:577–9.CrossRefGoogle Scholar
  5. 5.
    Budowle B, Eisenberg AJ. Forensic genetics. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR, editors. Emery and Rimoin’s Principles and Practice of Medical Genetics, vol. 1. 5th ed. Philadelphia: Elevier; 2007. p. 501–17.Google Scholar
  6. 6.
    Budowle B, Planz JV, Campbell R, Eisenberg AJ. Molecular diagnostic applications in forensic science. In: Patrinos G, Ansorge W, editors. Molecular Diagnostics. Amsterdam: Elsevier; 2005. p. 267–80.Google Scholar
  7. 7.
    Budowle B, van Daal A. Forensically relevant SNP classes. BioTechniques. 2008;44:603–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Berger C, Berger B, Parson W. Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations. Methods Mol Biol. 2012;830:331–48.PubMedCrossRefGoogle Scholar
  9. 9.
    Gomes C, Magalhães M, Alves C, Amorim A, Pinto N, Gusmão L. Comparative evaluation of alternative batteries of genetic markers to complement autosomal STRs in kinship investigations: autosomal indels vs. X-chromosome STRs Int J Legal Med. 2012;126:917–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Honda K, Roewer L, de Knijff P. Male DNA typing from 25-year-old vaginal swabs using Y chromosomal STR polymorphisms in a retrial request case. J Forensic Sci. 1999;44:868–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Hsieh HM, Hou RJ, Tsai LC, Wei CS, Liu SW, Huang LH, et al. A highly polymorphic STR locus in Cannabis sativa. Forensic Sci Int. 2003;131(1):53–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Linacre A, Tobe SS. An overview to the investigative approach to species testing in wildlife forensic science. BMC Investig Genet. 2011;2:2.CrossRefGoogle Scholar
  13. 13.
    Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, et al. Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci USA. 2011;108:5027–32.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    NAS report strengthening forensic science in the United States: A path forward. Washington DC: National Research Council, The National Academies Press; 2009.Google Scholar
  15. 15.
    Amorim A, Budowle B. Handbook of forensic genetics: Biodiversity and heredity in civil and criminal investigations. New Jersey: World Scientific; 2017. p. 1–632.Google Scholar
  16. 16.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989;17:6463–71.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Edwards A, Civitello A, Hammond HA, Caskey CT. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet. 1991;49:746–56.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992;12:241–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Collins PJ, Hennessy LI, Leibelt CS, Roby RK, Reeder DJ, Foxall PA. Developmental validation of a single-tube amplification of the 13 CODIS loci, D2S1338, D19S433, and amelogenin: the AmpFlSTR® Identifiler® PCR amplification kit. J Forensic Sci. 2004;49:1265–77.PubMedCrossRefGoogle Scholar
  22. 22.
    Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, et al. Validation of a 16-locus fluorescent multiplex system. J Forensic Sci. 2002;47:773–85.PubMedCrossRefGoogle Scholar
  23. 23.
    Flores SK, Sun J, King J, Budowle B. Validation of the GlobalFiler™ Express PCR Amplification Kit for the direct amplification of single-source DNA samples on a high-throughput automated workflow. Forens Sci Int Genet. 2014;10:33–9.CrossRefGoogle Scholar
  24. 24.
    Ensenberger MG, Lenz KA, Matthies LK, Hadinoto GM, Schienman JE, Przech AJ, et al. Developmental validation of the PowerPlex(®) Fusion 6C System. Forensic Sci Int Genet. 2016;21:134–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, et al. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674–9.CrossRefGoogle Scholar
  26. 26.
    Hood LE, Hunkapiller MW, Smith LM. Automated DNA sequencing and analysis of the human genome. Genomics. 1987;1:201–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Budowle B, Moretti TR, Niezgoda SJ, Brown BL. CODIS and PCR-based short tandem repeat loci: Law enforcement tools. In: Second European Symposium on Human Identification 1998. Madison: Promega Corporation; 1998. p. 73–88.Google Scholar
  28. 28.
    Martin PD, Schmitter H, Schneider PM. A brief history of the formation of DNA databases in forensic science within Europe. Forensic Sci Int. 2001;119:225–31.PubMedCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers BMC Genomics. 2012;13:341.PubMedGoogle Scholar
  31. 31.
    Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, et al. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31:294–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Merriman B, Rothberg JM. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. 2012;33:3397–417.PubMedCrossRefGoogle Scholar
  34. 34.
    Metzker ML. Sequencing technologies - the next generation. Nature Rev Genet. 2010;11:31–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Budowle B, Schmedes S, Murch RS. The microbial forensics pathway for use of massively-parallel sequencing technologies. The science and applications of microbial genomics. Institute of Medicine. Washington, DC: The National Academies Press; 2013. pp. 117–33.Google Scholar
  37. 37.
    Buchard A, Kampmann ML, Poulsen L, Borsting C, Morling N. ISO 17025 validation of a next-generation sequencing assay for relationship testing. Electrophoresis. 2016;37:2822–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Churchill JD, Chang J, Ge J, Rajagopalan N, Lagacé R, Liao W, et al. Blind study evaluation illustrates utility of the Ion PGM™ System for use in human identity DNA typing. Croat med J. 2015;56:218–29.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Churchill JD, Schmedes SE, King JL, Budowle B. Evaluation of the Illumina® beta version ForenSeq™ DNA Signature Prep Kit for use in genetic profiling. Forensic Int Genet Int. 2015;20:20–9.CrossRefGoogle Scholar
  40. 40.
    Churchill JD, King JL, Chakraborty R, Budowle B. Effects of the Ion PGM™ Hi-Q™ sequencing chemistry on sequence data quality. Int J Legal med. 2016;130:1169–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Davis C, Peters D, Warshauer D, King J, Budowle B. Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: Improved methods for DNA samples encountered in forensic testing. Legal Med. 2015;17:123–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Eduardoff M, Santos C, de la Puente M, Gross M, Strobl C, Sobrino B, et al. Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM. Forensic Sci Int Genet. 2015;17:110–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Fordyce SL, Avila-Arcos MC, Rockenbauer E, Borsting C, Frank-Hansen R, Petersen FT, et al. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform. BioTechniques. 2011;51:127–33.PubMedGoogle Scholar
  44. 44.
    Fordyce SL, Mogensen HS, Børsting C, Lagacé RE, Chang CW, Rajagopalan N, et al. Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™. Forensic Sci Int Genet. 2015;14:132–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Friis SL, Buchard A, Rockenbauer E, Borsting C, Morling N. Introduction of the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files and expansion of the Danish STR sequence database to 11 STRs. Forensic Sci Int Genet. 2016;21:68–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Gettings KB, Kiesler KM, Faith SA, Montano E, Baker CH, Young BA, et al. Sequence variation of 22 autosomal STR loci detected by next generation sequencing. Forensic Sci Int Genet. 2016;21:15–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Hollard C, Keyser C, Delabarde T, Gonzalez A, Vilela Lamego C, Zvenigorosky V, et al. Case report: on the use of the HID-ion AmpliSeq™ Ancestry Panel in a real forensic case. Int J Legal Med. 2016;131:351–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Hoogenboom J, van der Gaag KJ, de Leeuw RH, Sijen T, de Knijff P, Laros JFJ. FDSTools: a software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise. Forensic Sci Int Genet. 2017;27:27–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Kim EH, Lee HY, Yang IS, Jung SE, Yang WI, Shin KJ. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons. Forensic Sci Int Genet. 2016;22:1–7.PubMedCrossRefGoogle Scholar
  50. 50.
    King JL, LaRue BL, Novroski N, Stoljarova M, Seo SB, Zeng X, et al. High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forens Sci Int Genet. 2014;12:128–35.CrossRefGoogle Scholar
  51. 51.
    King JL, Wendt FR, Sun J, Budowle B. STRait Razor v2s: Advancing sequence-based STR allele reporting and beyond to other marker systems. Forens Sci Int Genet. 2017;29:21–8.CrossRefGoogle Scholar
  52. 52.
    Mikkelsen M, Hansen RF, Hansen AJ, Morling N. Massively parallel pyrose-quencing 454 methodology of the mitochondrial genome in forensic genetics. Forensic Sci Int Genet. 2014;12:30–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Novroski NM, King JL, Churchill JD, Seah LH, Budowle B. Characterization of genetic sequence variation of 58 STR loci in four major population groups. Forens Sci Int Genet. 2016;25:214–26.CrossRefGoogle Scholar
  54. 54.
    Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, et al. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet. 2013;7:543–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Seo SB, Zeng X, King JL, Larue BL, Assidi M, Al-Qahtani MH, et al. Underlying data for sequencing the mitochondrial genome with the massively parallel sequencing platform Ion Torrent™ PGM™. BMC Genomics. 2015;16(Suppl 1):S4.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Van Neste C, Vandewoestyne M, Van Criekinge W, Deforce D, Van Nieuwerburgh F. My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing. Forensic Sci Int Genet. 2014;9:1–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Wendt FR, Warshauer DH, Zeng X, Churchill JD, Novroski NM, Song B, et al. Massively parallel sequencing of 68 insertion/deletion markers identifies novel microhaplotypes for utility in human identity testing. Forens Sci Int Genet. 2016;25:198–209.CrossRefGoogle Scholar
  58. 58.
    Wendt F, King JL, Novroski NM, Churchill JD, Ng J, Oldt RF, et al. Flanking region variation of ForenSeq™ DNA Signature Prep Kit STR and SNP loci in Yavapai Native Americans. Forens Sci Int Genet. 2017;28:146–54.CrossRefGoogle Scholar
  59. 59.
    Zeng X, King J, Hermanson S, Patel J, Storts DR, Budowle B. An evaluation of the PowerSeq™ Auto system: a multiplex short tandem repeat marker kit compatible with massively parallel sequencing. Forens Int Genet Int. 2015;19:172–9.CrossRefGoogle Scholar
  60. 60.
    Zeng X, King JL, Stoljarova M, Warshauer DH, LaRue BL, Sajantila A, et al. High sensitivity multiplex short tandem repeat loci analyses with massively parallel sequencing. Forens Sci Int Genet. 2014;16C:38–47.Google Scholar
  61. 61.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wilson MR, Polanskey D, Butler J, DiZinno JA, Replogle J, Budowle B. Extraction, PCR amplification, and sequencing of mitochondrial DNA from human hair shafts. BioTechniques. 1995;18:662–9.PubMedGoogle Scholar
  63. 63.
    Cummings CA, Bormann-Chung CA, Fang R, Barker M, Brzoska P, Williamson PC, et al. Accurate, rapid, and high-throughput detection of strain-specific polymorphisms in Bacillus anthracis and Yersinia Pestis by next-generation sequencing. BMC Investigative Genetics. 2010;1:5.CrossRefGoogle Scholar
  64. 64.
    International Statistical Classification of Diseases and Related Health Problems – 10th Revision (ICD-10). Vol. 2: Instruction Manual. Geneva: World Health Organisation; 1993.Google Scholar
  65. 65.
    Sajantila A, Palo JU, Ojanperä I, Davis C, Budowle B. Pharmacogenetics in medico-legal context. Forens Sci Int. 2010;203:44–52.CrossRefGoogle Scholar
  66. 66.
    Hoyert DL. The changing profile of autopsied deaths in the United States, 1972-2007. NCHS Data Brief, No. 67, August 2011.
  67. 67.
    Ingelman-Sundberg M. Pharmacogenomics: an opportunity for a safer and more efficient pharmacotherapy. J Intern Med. 2001;250:186–200.PubMedCrossRefGoogle Scholar
  68. 68.
    Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present, and future. Trends Pharmacol Sci. 2004;25:193–200.PubMedCrossRefGoogle Scholar
  69. 69.
    Ingelman-Sundberg M, Gomez A. The past, present and future of pharmacoepigenomics. Pharmacogenomics. 2010;11:625–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol. 1979;16:183–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Meyer UA. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nat Rev Genet. 2004;5:669–76.PubMedCrossRefGoogle Scholar
  72. 72.
    Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6:947–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Ackerman MJ, Tester DJ, Driscoll DJ. Molecular autopsy of sudden unexplained death in the young. Am J Forensic Med Pathol. 2001;22:105–11.PubMedCrossRefGoogle Scholar
  74. 74.
    Davidson CS. The autopsy in the age of molecular biology. Jama. 1965;193:813–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Jannetto PJ, Wong SH, Gock SB, Laleli-Sahin E, Schur BC, Jentzen JM. Pharmacogenomics as molecular autopsy for postmortem forensic toxicology: genotyping cytochrome P450 2D6 for oxycodone cases. J Anal Toxicol. 2001;26:438–47.CrossRefGoogle Scholar
  76. 76.
    Jin M, Gock SB, Jannetto PJ, Jentzen JM, Wong SH. Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol. 2005;29:590–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Larsen MK, Nissen PH, Berge KE, Leren TP, Kristensen IB, Jensen HK, et al. Molecular autopsy in young sudden cardiac death victims with suspected cardiomyopathy. Forensic Sci Int. 2012;219:33–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Madea B, Preuss J. Medical malpractice as reflected by the forensic evaluation of 4450 autopsies. Forensic Sci Int. 2009;190:58–66.PubMedCrossRefGoogle Scholar
  79. 79.
    Santori M, Blanco-Verea A, Gil R, Cortis J, Becker K, Schneider PM, et al. Broad-based molecular autopsy: a potential tool to investigate the involvement of subtle cardiac conditions in sudden unexpected death in infancy and early childhood. Arch Dis Child. 2015;100:952–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Meletis JC. Favism: a brief history from the “abstain from beans” of Pythagoras to the present. Arch Hellenic Med. 2011;29:258–63.Google Scholar
  81. 81.
    Luzzatto L, Nannelli C, Notaro R. Glucose-6-Phosphate Dehydrogenase deficiency. Hematol Oncol Clin North Am. 2016;30:373–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Fox AL. The relationship between chemical constitution and taste. Proc Natl Acad Sci USA. 1932;18:115–20.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Smith RL. Introduction: human genetic variations in oxidative drug metabolism. Xenobiotica. 1986;16:361–5.CrossRefGoogle Scholar
  84. 84.
    Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet. 2006;368:704.PubMedCrossRefGoogle Scholar
  85. 85.
    Ingelman-Sudberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5:6–13.CrossRefGoogle Scholar
  86. 86.
    Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedeberg’s Arch Pharmacol. 2004;369:89–104.CrossRefGoogle Scholar
  87. 87.
    Zhou SF, Di YM, Chan E, Du YM, Chow VD, Xue CC, et al. Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab. 2008;9:738–84.PubMedCrossRefGoogle Scholar
  88. 88.
    Hiratsuka M. In vitro assessment of the allelic variants of cytochrome P450. Drug Metab Pharmacokinet. 2012;27:68–84.PubMedCrossRefGoogle Scholar
  89. 89.
    Sistonen J, Madadi P, Ross CJ, Yazdanpanah M, Lee JW, Landsmeer ML, et al. Prediction of codeine toxicity in infants and their mothers using a novel combination of maternal genetic markers. Clin Pharmacol Ther. 2012;91:692–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Weber A, Szalai R, Sipeky C, Magyari L, Melegh M, Jaromi L, et al. Increased prevalence of functional minor allele variants of drug metabolizing CYP2B6 and CYP2D6 genes in Roma population samples. Pharmacol Rep. 2015;67:460–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther. 2008;83:234–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19:69–76.PubMedCrossRefGoogle Scholar
  93. 93.
    Druid H, Holmgren P, Carlsson B, Ahlner J. Cytochrome P450 2D6 (CYP2D6) genotyping on postmortem blood as a supplementary tool for interpretation of forensic toxicological results. Forensic Sci Int. 1999;99:25–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Levo A, Koski A, Ojanpera I, Vuori E, Sajantila A. Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int. 2003;135:9–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Wendt FR, Sajantila A, Chakraborty R, Budowle B. Global genetic variation of select opiate metabolism genes in self-reported healthy individuals. Pharmacogenomics J (in press). doi: 10.1038/tpj.2017.13.
  96. 96.
    Wendt FR, Sajantila A, Moura-Neto RS, Woerner AE, Budowle B. Full-gene haplotypes refine CYP2D6 metabolizer phenotype inferences. Eur Hum Genet. (submitted).Google Scholar
  97. 97.
    Budowle B, Schutzer SE, Einseln A, Kelley LC, Walsh AC, Smith JAL, et al. Building microbial forensics as a response to Bioterrorism. Science. 2003;301:1852–3.PubMedCrossRefGoogle Scholar
  98. 98.
    Schmedes S, Sajantila A, Budowle B. Expansion of microbial forensics. J Clin Microbiol. 2016;54:1964–74.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, et al. The origin of the Haitian cholera outbreak strain. N Engl J med. 2011;364:33–42.PubMedCrossRefGoogle Scholar
  100. 100.
    Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC, Fitzgerald M, et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proc Natl Acad Sci USA. 2012;109:3065–70.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hasan NA, Choi SY, Eppinger M, Clark PW, Chen A, Alam M, et al. Genomic diversity of 2010 Haitian cholera outbreak strains. Proc Natl Acad Sci USA. 2012;109:E2010–7.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS, Engelthaler DM, et al. Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. mBio. 2011;2:e00157–11.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ou CY, Ciesielski CA, Myers G, Bandea CI, Luo CC, Korber BT, et al. Molecular epidemiology of HIV transmission in a dental practice. Science. 1992;256:1165–71.PubMedCrossRefGoogle Scholar
  104. 104.
    Metzker ML, Mindell DP, Liu XM, Ptak RG, Gibbs RA, Hillis DM. Molecular evidence of HIV-1 transmission in a criminal case. Proc Natl Acad Sci USA. 2002;99:14292–7.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    González-Candelas F, Bracho MA, Wróbel B, Moya A. Molecular evolution in court: analysis of a large hepatitis C virus outbreak from an evolving source. BMC Biol. 2013;11:76.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Pechal JL, Crippen TL, Benbow ME, Tarone AM, Dowd S, Tomberlin JK. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Legal Med. 2014;128:193–205.PubMedCrossRefGoogle Scholar
  107. 107.
    Jesmok EM, Hopkins JM, Foran DR. Next-generation sequencing of the bacterial 16S rRNA gene for forensic soil comparison: a feasibility study. J Forens Sci. 2016;61:607–17.CrossRefGoogle Scholar
  108. 108.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–92.PubMedCrossRefGoogle Scholar
  109. 109.
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  110. 110.
    Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21.CrossRefGoogle Scholar
  111. 111.
    Luckey T. Introduction to intestinal microecology. Am J Clin Nutr. 1972;25:1292–4.PubMedGoogle Scholar
  112. 112.
    Savage D. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–33.PubMedCrossRefGoogle Scholar
  113. 113.
    Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol. 1996;4:430–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Goga H. Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners. Int J Legal Med. 2012;126:815–23.PubMedCrossRefGoogle Scholar
  117. 117.
    Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA. 2008;105:17994–9.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Akutsu T, Motani H, Watanabe K, Iwase H, Sakurada K. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid. Legal Med. 2012;14:160–2.PubMedCrossRefGoogle Scholar
  119. 119.
    Doi M, Gamo S, Okiura T, Nishimukai H, Asano M. A simple identification method for vaginal secretions using relative quantification of Lactobacillus DNA. Forensic Sci Int Genet. 2014;12:93–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Fleming RI, Harbison S. The use of bacteria for the identification of vaginal secretions. Forensic Sci Int Genet. 2010;4:311–5.PubMedCrossRefGoogle Scholar
  121. 121.
    Nakanishi H, Kido A, Ohmori T, Takada A, Hara M, Adachi N, et al. A novel method for the identification of saliva by detecting oral streptococci using PCR. Forensic Sci Int. 2009;183:20–3.PubMedCrossRefGoogle Scholar
  122. 122.
    Choi A, Shin K-J, Yang WI, Lee HY. Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med. 2014;128:33–41.PubMedCrossRefGoogle Scholar
  123. 123.
    Scheidegger C, Zimmerli W. Infectious complications in drug addicts: seven-year review of 269 hospitalized narcotics abusers in Switzerland. Rev Infect Dis. 1989;11:486–93.PubMedCrossRefGoogle Scholar
  124. 124.
    Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10:505–20.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Quagliarello B, Cespedes C, Miller M, Toro A, Vavagiakis P, Klein RS, et al. Strains of Staphylococcus aureus obtained from drug-use networks are closely linked. Clin Infect Dis. 2002;35:671–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Machin GA. Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. Amer J Med Genet. 1996;61:216–28.CrossRefGoogle Scholar
  127. 127.
    Weber-Lehhmann J, Schilling E, Gradl G, Richter DC, Wiehler J, Rolf B. Finding the needle in the haystack: Differentiating 'identical' twins in paternity testing and forensics by ultra-deep next generation sequencing. Forens Sci Int Genet. 2014;9:42–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bruce Budowle
    • 1
    • 2
  • Sarah E. Schmedes
    • 1
  • Frank R. Wendt
    • 1
  1. 1.Center for Human IdentificationUniversity of North Texas Health Science CenterFort WorthUSA
  2. 2.Center of Excellence in Genomic Medicine Research (CEGMR)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations