Advertisement

Forensic Science, Medicine, and Pathology

, Volume 13, Issue 2, pp 196–208 | Cite as

Electric fences and accidental death

  • Michael BurkeEmail author
  • Morris Odell
  • Heinrich Bouwer
  • Adam Murdoch
Case Report

Abstract

Deaths which occur in association with agricultural electric fences are very rare. In fact, electric fences have undoubtedly saved numerous human and animal lives by safely and reliably keeping livestock confined to their fields and enclosures and thus preventing motor vehicle incidents when livestock get onto roads and highways. Accidental and intentional human contact with electric fences occurs regularly and causes little more than transient discomfort, however, on exceptional occasions, contact with electric fences appears to be directly related to the death of the individual. The precise pathophysiological cause of these deaths is unclear. We present two cases of deaths associated with electric fences, discuss the possible pathophysiological mechanisms in these cases, and suggest a universal approach to the medico-legal investigation and documentation of these deaths.

Keywords

Electric fence Forensic Accidental death Cause of death Electrocution 

Notes

Compliance with ethical standards:

Funding

There was no external source of funding for this paper.

Conflict of interest

We have no conflict of interest.

Ethical approval

This article does not contain studies with human participants or animals.

References

  1. 1.
    Phillips GE, Lavelle MJ, Fischer JW, White JJ, Wells SJ, Vercauteren KC. A novel bipolar electric fence for excluding white-tailed deer from stored livestock feed. J Anim Sci. 2012;90(11):4090–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Brooks D. The role of RMS. Printed Circuit Design. 2001;18:7.Google Scholar
  3. 3.
    Kroll MW, Perkins PE, Panescue D. Electric fence standards comport with human data and AC limits. Conf Proc IEEE End Med Biol Soc. 2015;2015:1343–8.Google Scholar
  4. 4.
    De Martino MGB, dos Reis FS, Dias, GAD. An electric fence energizer method. IEEE ISIE, 2006.Google Scholar
  5. 5.
    Faes TJC, van Der Meij HA, de Munck JC, Heethaar RM. The electric resistivity of human tissues (100 Hz – 10 MHz): a meta-analysis of review studies. Physiol Meas. 1999;20:R1–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Kroll MW, Fish RM, Lakkireddy D, Luceri RM, Panescu D. Essentials of low-power electrocution: Established and speculated mechanisms. 34th Annual International Conference of the IEEE EMBS. San Diego, California, USA. 28 August-1 September 2012;5734–40.Google Scholar
  7. 7.
    Spies C, Trohman RG. Narrative review: electrocution and life-threatening electrical injuries. Ann Intern Med. 2006;145(7):531–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Odell MS. Electric shocks and electrocution, clinical effects and pathology. In: Byard R, Payne-James J, editors. Encyclopedia of forensic and legal medicine. 2nd ed. Oxford: Elsevier; 2016. p. 419–27.CrossRefGoogle Scholar
  9. 9.
    Cooper MA. Emergent care of lightning and electrical injuries. Semin Neurol. 1995;15(3):268–78.PubMedCrossRefGoogle Scholar
  10. 10.
    Mellen PF, Weedn VW, Kao G. Electrocution: a review of 155 cases with emphasis on human factors. J Forens Sci. 1992;37(4):1016–22.CrossRefGoogle Scholar
  11. 11.
    Anders S, Matschke J, Tsokos M. Internal current mark in a case of suicide by electrocution. Am J Forensic Med Pathol. 2001;22(4):370–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Geddes LA, Bourland JD, Ford G. The mechanism underlying sudden death from electric shock. Med Instrum. 1986;20(6):303–15.PubMedGoogle Scholar
  13. 13.
    Voroshilovski O, Qu Z, Lee MH, Ohara T, Fishbien GA, Huang HL, et al. Mechanisms of ventricular fibrillation induction by 60-Hz alternating current in isolated right ventricle. Circulation. 200;102(134):1569–74.Google Scholar
  14. 14.
    Swerdlow CD, Martin DJ, Kass RM, Davie S, Mandel WJ, Gang ES, et al. The zone of vulnerability to T wave shocks in humans. J Cardiovasc Electrophysiol. 1997;8(2):145–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Panescu D, Nerheim M, Kroll M. Electrical safety of conducted electrical weapons relative to requirements of relevant electrical standards. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5342–7.PubMedGoogle Scholar
  16. 16.
    Nimunkar AJ, Webster JG. Safety of pulsed electric devices. Physiol Meas. 2009;30(1):101–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Patrick Reilly J. Applied bioelectricity: from electrical stimulation to electropathology. New York: Springer Science & Business Media; 2012. p. 339.Google Scholar
  18. 18.
    Birchmeyer MS, Mitchell EK. Wischenewski revisited. The diagnostic value of gastric mucosal ulcers in hypothermic deaths. Am J Forensic Med Pathol. 1989;10(1):28–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Bright FM, Winskog C, Tsokos M, Walker M, Byard RW. Issues in the diagnosis of hypothermia: a comparison of two geographically separate populations. J Forensic Legal Med. 2014;22:30–2.CrossRefGoogle Scholar
  20. 20.
    Palmiere C, Mangin P. Postmortem biochemical investigations in hypothermia fatalities. Int J Legal Med. 2013;127(2):267–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Palmiere C, Mangin P. Hyperthermia and post-mortem biochemical investigations. Int J Legal Med. 2013;127(1):93–102.PubMedCrossRefGoogle Scholar
  22. 22.
    Finsterer J, Stöllberger C. Neurological and non-neurological triggers of Takotsubo syndrome in the pediatric population. Int J Cardiol. 2015;179:345–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Glaveckaitė S, Šerpytis P, Pečiūraitė D, Puronaitė R, et al. Clinical features and three-year outcomes of Takotsubo (stress) cardiomyopathy: Observational data from one center. J Cardiol. 2016;pii:S1109–9666(16)30297–294.Google Scholar
  24. 24.
    Madhavan M, Prasad A. Proposed Mayo Clinic criteria for the diagnosis of Tako-Tsubo cardiomyopathy and long-term prognosis. Herz. 2010;35(4):240–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Indorato F, Akashi YJ, Rossitto C, Raffino C, Bartoloni G. Takotsubo cardiomyopathy associated with rupture of the left ventricular apex: assessment of histopathological features of a fatal case and literature review. Forensic Sci Med Pathol. 2015;11(4):577–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Semsarian C, Ingles J, Wilde AA. Sudden cardiac death in the young: the molecular autopsy and a practical approach to surviving relatives. Eur Heart J. 2015;36(21):1290–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Sumitomo N. Current topics in catecholaminergic polymorphic ventricular tachycardia. J Arrhythm. 2016;32(5):344–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Scarano M, Parato VM, Labanti B, Imbalzano E. Stress status and ventricular fibrillation in long QT syndrome. Int J Cardiol. 2014;172(3):e438–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Lane RD, Laukes C, Marcus FI, Chesney MA, Sechrest L, Gear K, et al. Psychological stress preceding idiopathic ventricular fibrillation. Psychsom Med. 2005;67(3):359–65.CrossRefGoogle Scholar
  30. 30.
    Brion M, Sobrino B, Martinez M, Blanco-Verea A, Carracedo A. Massive parallel sequencing applied to the molecular autopsy in sudden cardiac death in the young. Forensic Sci Int Genet. 2015;18:160–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Victorian Institute of Forensic MedicineSouthbank, VicAustralia
  2. 2.Department of Forensic MedicineMonash UniversityMelbourneAustralia
  3. 3.Equipment Safety and Energy EfficiencyEnergySafe VictoriaSouthbank VicAustralia

Personalised recommendations