Forensic Science, Medicine, and Pathology

, Volume 12, Issue 3, pp 299–303 | Cite as

Caffeine toxicity in forensic practice: possible effects and under-appreciated sources

  • Ian F. Musgrave
  • Rachael L. Farrington
  • Claire Hoban
  • Roger W. Byard


Caffeine is considered a very safe stimulant and is widely consumed in a variety of forms, from pure caffeine to beverages and foods. Typically, death is only seen when gram quantities of caffeine are consumed, usually in suicide attempts. Even in this scenario, death is rare. However, there are special populations that need to be considered in forensic presentations, who may be at greater risk. These include poor metabolizers, people with liver disease, and people with cardiac conditions, who can die as a result of caffeine intake at levels well below what is ordinarily considered toxic. Also, caffeine intake may be hidden. For example, herbal medicines with substantial caffeine content may not disclose these concentrations on their product label. The role of caffeine in medicolegal deaths is yet to be defined, however, herbal medicines and herbal weight loss supplements may represent an underappreciated source of caffeine in this context.


Caffeine Toxicity Forensic Death Caffeine-intoxication Herbal medicine Pharmacokinetics Undeclared sources Review 


  1. 1.
    Panel EN. Scientific opinion on the safety of caffeine. EFSA J. 2015;13:120.Google Scholar
  2. 2.
    Dalvi RR. Acute and chronic toxicity of caffeine: a review. Vet Hum Toxicol. 1986;28:144–50.PubMedGoogle Scholar
  3. 3.
    Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol. 2014;180:763–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Loftfield E, Freedman ND, Graubard BI, Guertin KA, Black A, Huang WY, et al. Association of Coffee consumption with overall and cause-specific mortality in a large US prospective cohort study. Am J Epidemiol. 2015;182:1010–22.PubMedGoogle Scholar
  5. 5.
    Boison D. Methylxanthines, seizures, and excitotoxicity. Handb Exp Pharmacol. 2011;200:251–66.CrossRefPubMedGoogle Scholar
  6. 6.
    Schimpl FC, da Silva JF, Goncalves JF, Mazzafera P. Guarana: revisiting a highly caffeinated plant from the Amazon. J Ethnopharmacol. 2013;150:14–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Tunnicliffe JM, Erdman KA, Reimer RA, Lun V, Shearer J. Consumption of dietary caffeine and coffee in physically active populations: physiological interactions. Appl Physiol Nutr Metab. 2008;33:1301–10.CrossRefPubMedGoogle Scholar
  8. 8.
    Gunja N, Brown JA. Energy drinks: health risks and toxicity. Med J Aust. 2012;196:46–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Pendleton M, Brown S, Thomas CM, Odle B. Potential toxicity of caffeine when used as a dietary supplement for weight loss. J Diet Suppl. 2013;10:1–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Cannon ME, Cooke CT, McCarthy JS. Caffeine-induced cardiac arrhythmia: an unrecognised danger of healthfood products. Med J Aust. 2001;174:520–1.PubMedGoogle Scholar
  11. 11.
    Banerjee P, Ali Z, Levine B, Fowler DR. Fatal caffeine intoxication: a series of eight cases from 1999 to 2009. J Forensic Sci. 2014;59:865–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Bonsignore A, Sblano S, Pozzi F, Ventura F, Dell’Erba A, Palmiere C. A case of suicide by ingestion of caffeine. Forensic Sci Med Pathol. 2014;10:448–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Jabbar SB, Hanly MG. Fatal caffeine overdose: a case report and review of literature. Am J Forensic Med Pathol. 2013;34:321–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Silva AC, de Oliveira Ribeiro NP, de Mello Schier AR, Pereira VM, Vilarim MM, Pessoa TM, et al. Caffeine and suicide: a systematic review. CNS Neurol Disord: Drug Targets. 2014;13:937–44.CrossRefGoogle Scholar
  15. 15.
    Yamamoto T, Yoshizawa K, Kubo S, Emoto Y, Hara K, Waters B, et al. Autopsy report for a caffeine intoxication case and review of the current literature. J Toxicol Pathol. 2015;28:33–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Dorne JL, Walton K, Renwick AG. Uncertainty factors for chemical risk assessment: human variability in the pharmacokinetics of CYP1A2 probe substrates. Food Chem Toxicol. 2001;39:681–96.CrossRefPubMedGoogle Scholar
  17. 17.
    Kashuba AD, Bertino JS Jr, Kearns GL, Leeder JS, James AW, Gotschall R, et al. Quantitation of three-month intraindividual variability and influence of sex and menstrual cycle phase on CYP1A2, N-acetyltransferase-2, and xanthine oxidase activity determined with caffeine phenotyping. Clin Pharmacol Ther. 1998;63:540–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang L, Hu Z, Deng X, Wang Y, Zhang Z, Cheng ZN. Association between common CYP1A2 polymorphisms and theophylline metabolism in non-smoking healthy volunteers. Basic Clin Pharmacol Toxicol. 2013;112:257–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295:1135–41.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology. 2010;211:245–57.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Busuttil M, Willoughby S. A survey of energy drink consumption among young patients presenting to the emergency department with the symptom of palpitations. Int J Cardiol. 2016;204:55–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64:1147–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Cheston P, Smith L. Man died after overdosing on caffeine mints. Independent. 2013.Google Scholar
  24. 24.
    Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39:127–53.CrossRefPubMedGoogle Scholar
  25. 25.
    George J, Murphy T, Roberts R, Cooksley WG, Halliday JW, Powell LW. Influence of alcohol and caffeine consumption on caffeine elimination. Clin Exp Pharmacol Physiol. 1986;13:731–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Ciszowski K, Biedron W, Gomolka E. Acute caffeine poisoning resulting in atrial fibrillation after guarana extract overdose. Przegl Lek. 2014;71:495–8.PubMedGoogle Scholar
  27. 27.
    Bryczkowski C, Geib AJ. Combined butalbital/acetaminophen/caffeine overdose: case files of the Robert Wood Johnson Medical School Toxicology Service. J Med Toxicol. 2012;8:424–31.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Berger AJ, Alford K. Cardiac arrest in a young man following excess consumption of caffeinated “energy drinks”. Med J Aust. 2009;190:41–3.PubMedGoogle Scholar
  29. 29.
    Rhidian R. Running a risk? Sport supplement toxicity with ephedrine in an amateur marathon runner, with subsequent rhabdomyolysis. BMJ Case Rep. 2011. doi: 10.1136/bcr.11.2011.5093.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Berger RE, Ganetsky M. An over-the-counter weight-loss supplement with a toxicity that may be unexpectedly difficult to treat. Intern Emerg Med. 2012;7(Suppl 2):S91–2.CrossRefPubMedGoogle Scholar
  31. 31.
    Seifert SM, Seifert SA, Schaechter JL, Bronstein AC, Benson BE, Hershorin ER, et al. An analysis of energy-drink toxicity in the National Poison Data System. Clin Toxicol (Phila). 2013;51:566–74.CrossRefGoogle Scholar
  32. 32.
    Wolk BJ, Ganetsky M, Babu KM. Toxicity of energy drinks. Curr Opin Pediatr. 2012;24:243–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Yen M, Ewald MB. Toxicity of weight loss agents. J Med Toxicol. 2012;8:145–52.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Campana C, Griffin PL, Simon EL. Caffeine overdose resulting in severe rhabdomyolysis and acute renal failure. Am J Emerg Med. 2014;32:111.e3–.e4.CrossRefGoogle Scholar
  35. 35.
    Chiang WF, Liao MT, Cheng CJ, Lin SH. Rhabdomyolysis induced by excessive coffee drinking. Hum Exp Toxicol. 2014;33:878–81.CrossRefPubMedGoogle Scholar
  36. 36.
    Cole C, Jones L, McVeigh J, Kicman A, Syed Q, Bellis M. Adulterants in illicit drugs: a review of empirical evidence. Drug Test Anal. 2011;3:89–96.CrossRefPubMedGoogle Scholar
  37. 37.
    Davies S, Lee T, Ramsey J, Dargan PI, Wood DM. Risk of caffeine toxicity associated with the use of ‘legal highs’ (novel psychoactive substances). Eur J Clin Pharmacol. 2012;68:435–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Hoyte C. The toxicity of energy drinks: myth or reality? Clin Toxicol (Phila). 2013;51:729–30.CrossRefGoogle Scholar
  39. 39.
    O’Malley PA. Caffeinated energy drinks: risks assumed with consumption when competing, working, and drinking. Clin Nurse Spec. 2012;26:250–3.CrossRefPubMedGoogle Scholar
  40. 40.
    Suzuki H, Tanifuji T, Abe N, Maeda M, Kato Y, Shibata M, Fukunaga T. Characteristics of caffeine intoxication-related death in Tokyo, Japan, between 2008 and 2013. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2014;49:270–7.PubMedGoogle Scholar
  41. 41.
    Ishikawa T, Yuasa I, Endoh M. Non specific drug distribution in an autopsy case report of fatal caffeine intoxication. Leg Med (Tokyo). 2015;17:535–8.CrossRefGoogle Scholar
  42. 42.
    Tominaga M, Michiue T, Oritani S, Ishikawa T, Maeda H. Evaluation of postmortem drug concentrations in bile compared with blood and urine in forensic autopsy cases. J Anal Toxicol. 2016;40:367–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Tominaga M, Michiue T, Ishikawa T, Inamori-Kawamoto O, Oritani S, Maeda H. Evaluation of postmortem drug concentrations in cerebrospinal fluid compared with blood and pericardial fluid. Forensic Sci Int. 2015;254:118–25.CrossRefPubMedGoogle Scholar
  44. 44.
    Byard RW. The potential forensic significance of traditional herbal medicines. J Forensic Sci. 2010;55:89–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Ozdemir B, Sahin I, Kapucu H, Celbis O, Karakoc Y, Erdogan S, et al. How safe is the use of herbal weight-loss products sold over the internet? Hum Exp Toxicol. 2013;32:101–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Khazan M, Hedayati M, Kobarfard F, Askari S, Azizi F. Identification and determination of synthetic pharmaceuticals as adulterants in eight common herbal weight loss supplements. Iran Red Crescent Med J. 2014;16:e15344.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ian F. Musgrave
    • 1
    • 2
  • Rachael L. Farrington
    • 1
  • Claire Hoban
    • 1
  • Roger W. Byard
    • 2
  1. 1.Discipline of PharmacologyThe University of AdelaideAdelaideAustralia
  2. 2.Discipline of Anatomy and Pathology, School of MedicineThe University of AdelaideAdelaideAustralia

Personalised recommendations