Advertisement

Forensic Science, Medicine, and Pathology

, Volume 12, Issue 4, pp 451–485 | Cite as

Methods for determining time of death

  • Burkhard MadeaEmail author
Original Article

Abstract

Medicolegal death time estimation must estimate the time since death reliably. Reliability can only be provided empirically by statistical analysis of errors in field studies. Determining the time since death requires the calculation of measurable data along a time-dependent curve back to the starting point. Various methods are used to estimate the time since death. The current gold standard for death time estimation is a previously established nomogram method based on the two-exponential model of body cooling. Great experimental and practical achievements have been realized using this nomogram method. To reduce the margin of error of the nomogram method, a compound method was developed based on electrical and mechanical excitability of skeletal muscle, pharmacological excitability of the iris, rigor mortis, and postmortem lividity. Further increasing the accuracy of death time estimation involves the development of conditional probability distributions for death time estimation based on the compound method. Although many studies have evaluated chemical methods of death time estimation, such methods play a marginal role in daily forensic practice. However, increased precision of death time estimation has recently been achieved by considering various influencing factors (i.e., preexisting diseases, duration of terminal episode, and ambient temperature). Putrefactive changes may be used for death time estimation in water-immersed bodies. Furthermore, recently developed technologies, such as H magnetic resonance spectroscopy, can be used to quantitatively study decompositional changes. This review addresses the gold standard method of death time estimation in forensic practice and promising technological and scientific developments in the field.

Keywords

Time of death Methods Body cooling Nomogram method Vitreous humor Decomposition 

References

  1. 1.
    Henssge C, Madea B. Methoden zur Bestimmung der Todeszeit an Leichen. Lübeck: Schmidt-Römhild-Verlag; 1988.Google Scholar
  2. 2.
    Henssge C, Madea B. Estimation of the time since death in the early post-mortem period. Forensic Sci Int. 2004;144:167–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Henssge C, Madea B. Estimation of time since death. Forensic Sci Int. 2007;165:182–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Madea B. Handbook of forensic medicine. Chichester: Wiley; 2014.CrossRefGoogle Scholar
  5. 5.
    Madea B, Henssge C. Timing of death. In: Payne-James J, Busuttil A, editors. Forensic Medicine: clinical and pathological aspects. London: Greenwich Medical Media Limited; 2003. p. 91–114.Google Scholar
  6. 6.
    Madea B. Rechtsmedizin: Befunderhebung, Rekonstruktion, Begutachtung. 3rd ed. Berlin: Springer; 2015.Google Scholar
  7. 7.
    Albrecht A, Gerling I, Henssge C. Zur Anwendung des Rektaltemperatur-Todeszeit-Nomogramms am Leichenfundort. Z Rechtsmed. 1990;103:257–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Althaus L, Henssge C. Rectal temperature time of death nomogram: sudden change of ambient temperature. Forensic Sci Int. 1999;99:171–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Brown A, Marshall TK. Body temperature as a means of estimating the time of death. Forensic Sci. 1974;4:125–33.PubMedCrossRefGoogle Scholar
  10. 10.
    De Saram GSW, Webster G, Kathirgamatamby N. Post-mortem temperature and the time of death. J Crim Law Criminol. 1955;46:562–77.CrossRefGoogle Scholar
  11. 11.
    Henssge C. Rectal temperature time of death nomogram: dependence of corrective factors on the body weight under stronger thermic insulation conditions. Forensic Sci Int. 1992;54:51–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Henssge C. Precision of estimating the time of death by mathematical expression of rectal body cooling. Z Rechtsmed. 1979;83:49–67.PubMedCrossRefGoogle Scholar
  13. 13.
    Henssge C. Death time estimation in case work I. The rectal temperature time of death nomogram. Forensic Sci Int. 1988;38:209–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Henssge C. Temperature based methods II. In: Henssge C, Knight B, Krompecher T, Madea B, Nokes L, editors. The estimation of the time since death in the early post-mortem period. 2nd ed. London: Edward Arnold; 2002.Google Scholar
  15. 15.
    Henssge C, Beckmann ER, Wischhusen F, Brinkmann B. A Determination of time of death by measuring central brain temperature. Z Rechtsmed. 1984;93:1–22.PubMedGoogle Scholar
  16. 16.
    Henssge C, Frekers R, Reinhardt S, Beckmann ER. Determination of time of death on the basis of simultaneous measurement of brain and rectal temperature. Z Rechtsmed. 1984;93:123–33.PubMedGoogle Scholar
  17. 17.
    Henssge C, Hahn S, Madea B. Praktische Erfahrungen mit einem Abkühlungsdummy. Beitr Gerichtl Med XLIV. 1986;123–126.Google Scholar
  18. 18.
    Henssge C, Madea B, Schaar U, Pitzken C. Die Abkühlung eines Dummy unter verschiedenen Bedingungen im Vergleich zur Leichenabkühlung. Beitr Gerichtl Med XLV. 1987;145–149.Google Scholar
  19. 19.
    Henssge C, Madea B, Gallenkemper E. Death time estimation in case work II. Integration of different methods. Forensic Sci Int. 1988;39:77–87.PubMedCrossRefGoogle Scholar
  20. 20.
    Henssge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henssge CA, et al. Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. II. Integration of non-temperature-based methods. Int J Legal Med. 2000;6:303–31.CrossRefGoogle Scholar
  21. 21.
    Henssge C, Madea B. Frühe Leichenerscheinungen und Todeszeitbestimmung im frühpostmortalen Intervall. In: Brinkmann B, Madea B, editors. Handbuch Rechtsmedizin, vol. I. Berlin: Springer; 2004.Google Scholar
  22. 22.
    Henssge C. Basics and application of the ‘nomogram method’ at the scene. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: Taylor & Francis Group/CRC Press; 2015. p. 63–114.Google Scholar
  23. 23.
    Henssge C, Madea B. Practical casework. Integration of different methods in casework. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 227–37.Google Scholar
  24. 24.
    Hubig M, Muggenthaler H, Mall G. Finite element method in temperature-based death time determination. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 114–33.Google Scholar
  25. 25.
    Hubig M, Muggenthaler H, Sinicina I, Mall G. Temperature based forensic death time estimation: The standard model in experimental test. Legal Medicine. Tokyo; 2015.Google Scholar
  26. 26.
    Marshall TK, Hoare FE. I Estimating the time of death. The rectal cooling after death and its mathematical expression. II The use of the cooling formula in the study of postmortem body cooling. III The use of the body temperature in estimating the time of death. J Forensic Sci. 1962;7:56–81, 189–210, 211–221.Google Scholar
  27. 27.
    Hunnius PV, Mallach HJ, Mittmeyer HJ. Quantitative pressure measurements of livores mortis relative to the determination of the time of death. Z Rechtsmed. 1973;73:325–44.CrossRefGoogle Scholar
  28. 28.
    Madea B, Knight B. Postmortem lividity. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 59–62.Google Scholar
  29. 29.
    Mallach HJ. Zur Frage der Todeszeitbestimmung. Berl Med. 1964;18:577–82.Google Scholar
  30. 30.
    Mallach HJ, Mittmeyer HJ. Totenstarre und Totenflecke. Z Rechtsmed. 1971;69:70–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Rosendahl W, Döppes D. Radiocarbon dating. Basic principles and applications. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 259–67.Google Scholar
  32. 32.
    Bate-Smith EC, Bendall JR. Rigor mortis and adenosinetriphosphate. J Physiol. 1947;106:177–85.PubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bate-Smith EC, Bendall JR. Factors determining the time course of rigor mortis. J Physiol. 1949;110:47–65.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Beier G, Liebhardt E, Schuck M, Spann M. Measurement of rigor mortis on human skeletal muscles in situ. Z Rechtsmed. 1977;79:277–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Krompecher T, Bergerioux C. Experimental evaluation of rigor mortis. VII. Effect of ante- and postmortem electrocution on the evolution of rigor mortis. Forensic Sci Int. 1988;38:27–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Krompecher T, Fryc O. Experimentelle Untersuchungen an der Leichenstarre unter Einfluss von körperlicher Anstrengung. Beitr Gerichtl Med. 1978;36:345–9.PubMedGoogle Scholar
  37. 37.
    Krompecher T, Fryc O. Experimental evaluation of rigor mortis. III. Comparative study of the evolution of rigor mortis in different sized muscle groups in rats. Forensic Sci Int. 1978;12:97–102.PubMedCrossRefGoogle Scholar
  38. 38.
    Krompecher T, Fryc O. Experimental evaluation of rigor mortis. IV. Change in strength and evolution of rigor mortis in the case of physical exercise preceding death. Forensic Sci Int. 1978;12:103–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Krompecher T, Fryc O. Zur Frage der Todeszeitbestimmung auf Grund der Leichenstarre. Beitr Gerichtl Med. 1979;37:285–9.PubMedGoogle Scholar
  40. 40.
    Krompecher T, Fryc O. Experimental evaluation of rigor mortis. V. Effects of temperature on the evolution of rigor mortis. Forensic Sci Int. 1981;17:19–26.PubMedCrossRefGoogle Scholar
  41. 41.
    Krompecher T. Rigor mortis: estimation of the time since death by the evaluation of the cadaveric rigidity. In: Henssge C, Knight B, Krompecher T, Madea B, Nokes L, editors. The estimation of the time since death in the early postmortem period. 2nd ed. London: Edward Arnold; 2002. p. 144–60.Google Scholar
  42. 42.
    Krompecher T. Rigor Mortis. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 41–57.Google Scholar
  43. 43.
    Madea B, Krompecher T, Knight B. Muscles and tissue changes after death. In: Henssge C, Knight B, Krompecher T, Madea B, Nokes L, editors. The estimation of the time since death in the early postmortem period. 2nd ed. London: Edward Arnold; 2002.Google Scholar
  44. 44.
    Dotzauer G. Idiomuskulärer Wulst und postmortale Blutung. Dtsch Z Gerichtl Med. 1958;46:761–71.Google Scholar
  45. 45.
    Madea B. Längsschnittuntersuchungen zur supravitalen elektrischen Erregbarkeit der Skelettmuskulatur. I. Objektivierung der supravitalen Muskelkontraktion. Rechtsmed. 1990;2:107–21.Google Scholar
  46. 46.
    Madea B. Längsschnittuntersuchungen zur supravitalen elektrischen Erregbarkeit der Skelettmuskulatur. II. Quantifizierung der supravitalen Muskelkontraktion. Rechtsmed. 1990;3:44–50.Google Scholar
  47. 47.
    Madea B. Estimating time of death from measurement of electrical excitability of skeletal muscle. J Forensic Sci Soc. 1992;32:117–29.PubMedCrossRefGoogle Scholar
  48. 48.
    Madea B, Henssge C. Electrical excitability of skeletal muscle postmortem in casework. Forensic Sci Int. 1990;47:207–27.PubMedCrossRefGoogle Scholar
  49. 49.
    Madea B, Rödig A. Precision of estimating the time since death using different criteria of excitability. For Sci Med Pathol. 2006;2:127–33.CrossRefGoogle Scholar
  50. 50.
    Madea B. Supravitality in tissues. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 17–40.Google Scholar
  51. 51.
    Berg S. Todeszeitbestimmung in der spätpostmortalen Phase. In: Brinkmann B, Madea B, editors. Handbuch Gerichtliche Medizin, vol. 1. Berlin: Springer; 2004. p. 191–204.Google Scholar
  52. 52.
    Bonte W. Der postmortale Proteinkatabolismus. Experimentelle Untersuchungen zum Problem der forensischen Leichenzeitbestimmung. Habilitationsschrift, Göttingen: Medizinische Fakultät der Georg-August-Universität Göttingen; 1978.Google Scholar
  53. 53.
    Madea B. Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci Int. 2005;151:139–49.PubMedCrossRefGoogle Scholar
  54. 54.
    Madea B, Preuss J, Musshoff F. From flourishing life to dust—the natural cycle of growth and decay. In: Wieczorek A, Rosendahl W, editors. Mummies of the world. Munich: Prestel; 2010. p. 14–29.Google Scholar
  55. 55.
    Madea B, Kernbach-Wighton G. Autolysis (self-digestion). In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2001. p. 153–61.Google Scholar
  56. 56.
    Rutty G, Morgan B. Cross-sectional imaging and the postmortem interval. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 269–75.Google Scholar
  57. 57.
    Adelson L, Sunshine I, Rushforth NB, Mankoff M. Vitreous potassium concentration as an indicator of the postmortem interval. J Forensic Sci. 1963;8:503–14.PubMedGoogle Scholar
  58. 58.
    Adjudantis G, Coutselinis A. Estimation of the time of death by potassioum levels in the vitreous humour. Forensic Sci. 1972;1:55–60.CrossRefGoogle Scholar
  59. 59.
    Bortolotti F, Pascali JP, Davis GG, Smith FP, Brissie RM, Tagliaro F. Study of vitreous potassium correlation with time since death in the postmortem range from 2 to 110 hours using capillary ion analysis. Med Sci Law. 2011;51(Suppl 1):S20–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Coe JI. Vitreous potassium as a measure of the postmortem interval: an historical review and critical evaluation. Forensic Sci Int. 1989;42:201–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Coe JI. Postmortem chemistry update. Emphasis on forensic application. Am J Forensic Med Pathol. 1993;14:91–117.PubMedCrossRefGoogle Scholar
  62. 62.
    Hansson L, Uotila U, Lindfors R, Laiho K. Potassium content of the vitreous body as an aid in determining the time of death. J Forensic Sci. 1966;11:390–4.PubMedGoogle Scholar
  63. 63.
    James RA, Hoadley PA, Sampson BG. Determination of postmortem interval by sampling vitreous humour. Am J Forensic Med Pathol. 1997;18:158–62.PubMedCrossRefGoogle Scholar
  64. 64.
    Jashnani KD, Kale SA, Rupani AB. Vitreous humor: biochemical constituents in estimation of postmortem interval. J Forensic Sci. 2010;55:1523–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Klein A, Klein S. Todeszeitbestimmung am menschlichen Auge. MD Thesis, Dresden University; 1978.Google Scholar
  66. 66.
    Lange N, Swearer S, Sturner WQ. Human postmortem interval estimation from vitreous potassium: an analysis of original data from six different studies. Forensic Sci Int. 1994;66:159–74.PubMedCrossRefGoogle Scholar
  67. 67.
    Madea B, Henssge C, Hönig W, Gerbracht A. References for determining the time of death by potassium in the vitreous humour. Forensic Sci Int. 1989;8:231–43.CrossRefGoogle Scholar
  68. 68.
    Madea B, Herrmann N, Henssge C. Precision of estimating the time since death by vitreous potassium—comparison of two different equations. Forensic Sci Int. 1990;46:277–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Madea B, Käferstein H, Herrmann N, Sticht G. Hypoxanthine in vitreous humour and cerebrospinal fluid—a marker of postmortem interval and prolonged (vital) hypoxia? Remarks also on hypoxanthine in SIDS. Forensic Sci Int. 1994;65:19–31.PubMedCrossRefGoogle Scholar
  70. 70.
    Madea B, Kreuser C, Banaschak S. Postmortem biochemical examination of synovial fluid—a preliminary study. Forensic Sci Int. 2001;118:29–35.PubMedCrossRefGoogle Scholar
  71. 71.
    Madea B, Henssge C. Eye changes after death. In: Henssge C, Knight B, Krompecher T, Madea B, Nokes L, editors. The estimation of the time since death in the early postmortem period. 2nd ed. London: Edward Arnold; 2002.Google Scholar
  72. 72.
    Madea B, Rödig A. Time of death dependent criteria in vitreous humor—precision of estimating the time since death. Forensic Sci Int. 2006;164:87–92.PubMedCrossRefGoogle Scholar
  73. 73.
    Madea B, Henssge C. Eye changes after death. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 161–85.Google Scholar
  74. 74.
    Madea B, Henssge C. Cerebrospinal fluid chemistry. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 186–9.Google Scholar
  75. 75.
    Mathur A, Agrawal YK. An overview of methods used for estimation of time since death. Aust J Forensic Sci. 2011;43:275–85.CrossRefGoogle Scholar
  76. 76.
    Mihailovic Z, Atanasijevic T, Popovic V, Milosevic MB, Sperhake JP. Estimation of the postmortem interval by analyzing potassium in the vitreous humor: could repetitive sampling enhance accuracy? Am J Forensic Med Pathol. 2012;33:400–3.PubMedCrossRefGoogle Scholar
  77. 77.
    Munoz JI, Suarez-Penaranda JM, Otero XL, Rodriguez-Calvo MS, Costas E, Miguens X, et al. A new perspecitive in the estimation of postmortem interval (PMI) based on vitreous. J Forensic Sci. 2001;45:209–2014.Google Scholar
  78. 78.
    Munoz Barus JI, Suarez-Penaranda J, Otero XL, Rodriguez-Calvo MS, Costas E, Miguens X, et al. Improved estimation of postmortem interval based on differential behavior of vitreous potassium and hypoxanthine in death by hanging. For Sci Int. 2002;125:67–74.Google Scholar
  79. 79.
    Pounder J. Postmortem interval. In: Siegel JA, Saukko PJ, Knupfer GC, editors. Encyclopaedia of forensic sciences, vol. 3. San Diego: Academic Press; 2000. p. 1167–72.CrossRefGoogle Scholar
  80. 80.
    Rognum TO, Hauge S, Oyasaeter S, Saugstad OD. A new biochemical method for estimation of postmortem time. For Sci Int. 1991;51:139–46.Google Scholar
  81. 81.
    Siddamsetty AK, Verma SK, Kohli A, Puri D, Singh A. Estimation of time since death form electrolyte, glucose and calcium analysis of postmortem vitreous humour in semi-arid climate. Med Sci Law. 2014;54:158–66.PubMedCrossRefGoogle Scholar
  82. 82.
    Stephens RJ, Richards RG. Vitreous humor chemistry: the use of potassium concentration for the prediction of the postmortem interval. J Forensic Sci. 1987;32:503–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Sturner WQ. The vitreous humour: postmortem potassium changes. Lancet. 1963;1:807–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Sturner WQ, Gantner GE. The postmortem interval. A study of potassium in the vitreous humor. Am J Clin Pathol. 1964;42:137–44.PubMedCrossRefGoogle Scholar
  85. 85.
    Tumrana NK, Ambadea VN, Dongreb AP. Thanatochemistry: study of vitreous humor potassium. Alexandria J Med. 2014;50:365–8.CrossRefGoogle Scholar
  86. 86.
    Zhou B, Zhang L, Zhang G, Zhang X, Jiang X. The determination of potassium concentration in vitreous humor by low pressure ion chromatography and its application in the estimation of postmortem interval. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;852:278–81.PubMedCrossRefGoogle Scholar
  87. 87.
    Zilg B, Bernard S, Alkass K, Berg S, Druid H. A new model for the estimation of time of death from vitreous potassium levels corrected for age and temperature. For Sci Int. 2015;254:158–66.Google Scholar
  88. 88.
    Zilg B. Postmortem analyses of virtreous fluid. MD Thesis, Department of Oncology-Pathology. Karolinska Institutet, Stockholm, Sweden; 2015.Google Scholar
  89. 89.
    Reibe S, Doetinchem PV, Madea B. A new simulation-based model for calculating post-mortem intervals using developmental data for Lucilia sericata (Dipt.: Calliphhoridae). Parasitol Res. 2010;107:9–16.PubMedCrossRefGoogle Scholar
  90. 90.
    Reibe S, Madea B. How promptly do blowflieds colonise fresh carcasses? A study comparing indoor with outdoor locations. For Sci Int. 2010;195:52–7.Google Scholar
  91. 91.
    Reibe S, Madea B. Use of Megaselia scalaris (Dipt.: Phoridae) for post-mortem interval estimation indoors. Parasitol Res. 2010;106:637–40.PubMedCrossRefGoogle Scholar
  92. 92.
    Reibe S. Forensic entomolgy. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 249–57.Google Scholar
  93. 93.
    Van den Oever R. A review of the literature as to the present possibilities and limitations in estimating the time of death. Med Sci Law. 1976;16:269–76.PubMedGoogle Scholar
  94. 94.
    Camps FE. Establishment of the time of death—a critical assessment. J Forensic Sci. 1959;4:73–82.Google Scholar
  95. 95.
    Horowitz M, Maddern GJ, Chatterton BE, Collins PJ, Harding PE, Sherman DJC. Changes in gastric emptying rates with age. Clin Sci. 1984;67:213–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Horowitz M, Pounder DJ. Gastric emptying—forensic implications of current concepts. Med Sci Law. 1985;25:201–14.PubMedGoogle Scholar
  97. 97.
    Madea B, Henssge C. Historisches zur Todeszeitbestimmung. Z Rechtsmed. 1985;95:19–25.PubMedCrossRefGoogle Scholar
  98. 98.
    Madea B, Oehmichen M, Henssge C. Postmortaler Transport von Mageninhalt. Z Rechtsmed. 1986;97:201–6.PubMedGoogle Scholar
  99. 99.
    Madea B, Knight B. Gastric contents and time since death. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 213–22.Google Scholar
  100. 100.
    Tröger HD, Baur C, Spann KW. Mageninhalt und Todeszeitbestimmung. Lübeck: Schmidt-Römhild; 1987.Google Scholar
  101. 101.
    Madea B, Henssge C. General remarks on estimating the time since death. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 1–6.Google Scholar
  102. 102.
    Knight B, Madea B. Historical review on early work on estimating the time since death. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 7–16.Google Scholar
  103. 103.
    Madea B. Importance of supravitality in forensic medicine. Forensic Sci Int. 1994;69:221–41.PubMedCrossRefGoogle Scholar
  104. 104.
    Rutty G. The use of temperatures recorded from the external auditory canal for the estimation of the postmortem interval. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 134–51.Google Scholar
  105. 105.
    Biermann FM, Potente S. The deployment of conditional probability distributions for death time estimation. Forensic Sci Int. 2011;210:82–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Potente S. Practical casework. Conditional probability in death time estimation. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 237–48.Google Scholar
  107. 107.
    Musshoff F, Klotzbach H, Block W, Traeber F, Schild H, Madea B. Comparison of post-mortem metabolic changes in sheep brain tissue in isolated heads and whole animals using 1H-MR spectroscopy—preliminary results. Int J Legal Med. 2011;125:741–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Musshoff F, Madea B. H3-Magnetic resonance spectroscopy. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 203–12.Google Scholar
  109. 109.
    Reh H. Diagnostik des Ertrinkungstodes und Bestimmung der Wasserzeit. Düsseldorf: Triltsch; 1969.Google Scholar
  110. 110.
    Reh H. Anhaltspunkte für die Bestimmung der Wasserliegezeit. Dtsch Z Ges Gerichtl Med. 1967;59:235–45.Google Scholar
  111. 111.
    Doberentz E, Madea B. Schätzung der Wasserliegezeit. Retrospektive Untersuchung zur Reliabilität. Rechtsmed. 2010;20:393–9.Google Scholar
  112. 112.
    Doberentz E, Madea B. Estimating the time of immersion of bodies found in water—an evaluation of a common method to estimate the minimum time interval of immersion. Revista Espanola de Medicina Legal. 2010;36:51–61.CrossRefGoogle Scholar
  113. 113.
    Doberentz E, Madea B. Estimation of duration of immersion. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 189–202.Google Scholar
  114. 114.
    Madea B. Estimation of duration of immersion. Nordisk Rettsmedisin. 2002;8:4–10.Google Scholar
  115. 115.
    Madea B, Stockhausen S, Doberentz E. Bestimmung der Wasserliegezeit nach Reh – weitere Untersuchungen zur Prüfung der Reliabilität. Arch Kriminol. 2016;237:1–2.PubMedGoogle Scholar
  116. 116.
    Wehner F. Die Eingrenzung der Leichenliegezeit im spätpostmortalen Intervall. Neue Ansätze mittels immunhistochemischer. Verfahren Med Welt. 2009;11–12:402–6.Google Scholar
  117. 117.
    Wehner F, et al. Delimitation of the time of death by immunohistochemical insulin detection in pancreatic ß-cells. Forensic Sci Int. 1999;105:161–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Wehner F, et al. Delimitation of the time of death by immunohistochemical detection of thyroglobulin. Forensic Sci Int. 2000;110:199–206.PubMedCrossRefGoogle Scholar
  119. 119.
    Wehner F, Wehner H-D, Subke J. Delimitation of the time of death by immunohistochemical detection of calcitonin. Forensic Sci Int. 2001;122:89–94.PubMedCrossRefGoogle Scholar
  120. 120.
    Wehner F, Wehner H-D, Subke J. Delimitation of the time of death by immunohistochemical detection of glucagon on pancreatic ß-cells. Forensic Sci Int. 2002;124:241–8.Google Scholar
  121. 121.
    Madea B. Immunohistochemical methods as an aid in estimating the time since death. In: Madea B, editor. Estimation of the time since death. 3rd ed. Boca Raton: CRC Press; 2015. p. 223–5.Google Scholar
  122. 122.
    Ondrizola A, Riancho JA, de la Vega R, Agudo G, Garcia-Blanco A, de Cos E, et al. miRNA analysis in vitreous humor to determine the time of death: a proof-of-concept pilot study. Int J Legal Med. 2013;127:573–8.CrossRefGoogle Scholar
  123. 123.
    Zubakov D, Kokshoorn M, Kloosterman A, Kayser M. New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-years-old stains. Int J Legal Med. 2009;123:71–4.PubMedCrossRefGoogle Scholar
  124. 124.
    Sampaio-Silva F, Magalhaes T, Carvalho F, Dinis-Oliveira RJ, Silvestre R. Profilingo f RNA degradation for estimation of post mortem interval. PLoS ONE. 2013;8:e56507.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. PNAS. 2013;110:9950–5.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kimura A, Ishida Y, Hayashi T, Nosaka M, Kondo T. Estimating time of death based on the biological clock. Int J Legal Med. 2011;125:385–91.PubMedCrossRefGoogle Scholar
  127. 127.
    Naeve W. Gerichtliche Medizin für Polizeibeamte. Heidelberg: Kriminalistik Verlag; 1978.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Forensic MedicineUniversity of BonnBonnGermany

Personalised recommendations