Advertisement

Forensic Science, Medicine, and Pathology

, Volume 10, Issue 3, pp 344–350 | Cite as

The presence of enterovirus, adenovirus, and parvovirus B19 in myocardial tissue samples from autopsies: an evaluation of their frequencies in deceased individuals with myocarditis and in non-inflamed control hearts

  • Trine Skov Nielsen
  • Jakob Hansen
  • Lars Peter Nielsen
  • Ulrik Thorngren Baandrup
  • Jytte Banner
Original Article

Abstract

Purpose

Multiple viruses have been detected in cardiac tissue, but their role in causing myocarditis remains controversial. Viral diagnostics are increasingly used in forensic medicine, but the interpretation of the results can sometimes be challenging. In this study, we examined the prevalence of adenovirus, enterovirus, and parvovirus B19 (PVB) in myocardial autopsy samples from myocarditis related deaths and in non-inflamed control hearts in an effort to clarify their significance as the causes of myocarditis in a forensic material.

Methods

We collected all autopsy cases diagnosed with myocarditis from 1992 to 2010. Eighty-four suicidal deaths with morphologically normal hearts served as controls. Polymerase chain reaction was used for the detection of the viral genomes (adenovirus, enterovirus, and PVB) in myocardial tissue specimens. The distinction between acute and persistent PVB infection was made by the serological determination of PVB-specific immunoglobulins M and G.

Results

PVB was detected in 33 of 112 (29 %) myocarditis cases and 37 of 84 (44 %) control cases. All of the samples were negative for the presence of adenovirus and enterovirus. Serological evidence of an acute PVB infection, determined by the presence of immunoglobulin M, was only present in one case. In the remaining cases, PVB was considered to be a bystander with no or limited association to myocardial inflammation.

Conclusion

In this study, adenovirus, enterovirus, and PVB were found to be rare causes of myocarditis. The detection of PVB in myocardial autopsy samples most likely represents a persistent infection with no or limited association with myocardial inflammation. The forensic investigation of myocardial inflammation demands a thorough examination, including special attention to non-viral causes and requires a multidisciplinary approach.

Keywords

Myocarditis PCR Enterovirus Adenovirus Parvovirus B19 Forensic medicine 

Notes

Acknowledgments

This work was supported by the Beckett Foundation, Kong Christian den Tiendes Foundation, Kirsten Anthonius Foundation (Mindelegat), Aalborg University, and Aarhus University.

References

  1. 1.
    Doolan A, Langlois N, Semsarian C. Causes of sudden cardiac death in young Australians. Med J Aust. 2004;180(3):110–2.PubMedGoogle Scholar
  2. 2.
    Langlois NE. Sudden adult death. Forensic Sci Med Pathol. 2009;5(3):210–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Diaz FJ, Loewe C, Jackson A. Death caused by myocarditis in Wayne County, Michigan: a 9-year retrospective study. Am J Forensic Med Pathol. 2006;27(4):300–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Burke AP, Saenger J, Mullick F, Virmani R. Hypersensitivity myocarditis. Arch Pathol Lab Med. 1991;115(8):764–9.PubMedGoogle Scholar
  5. 5.
    Courand PY, Croisille P, Khouatra C, Cottin V, Kirkorian G, Bonnefoy E. Churg–Strauss syndrome presenting with acute myocarditis and cardiogenic shock. Heart Lung Circ. 2012;21(3):178–81.PubMedCrossRefGoogle Scholar
  6. 6.
    De BD, Serroni N, Campanella D, Olivieri L, Ferri F, Carano A, et al. Update on the adverse effects of clozapine: focus on myocarditis. Curr Drug Saf. 2012;7(1):55–62.CrossRefGoogle Scholar
  7. 7.
    Nicklin A, Byard RW. Lethal manifestations of systemic lupus erythematosus in a forensic context. J Forensic Sci. 2011;56(2):423–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Phillips K, Luk A, Soor GS, Abraham JR, Leong S, Butany J. Cocaine cardiotoxicity: a review of the pathophysiology, pathology, and treatment options. Am J Cardiovasc Drugs. 2009;9(3):177–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Pilgrim JL, Woodford N, Drummer OH. Cocaine in sudden and unexpected death: a review of 49 post-mortem cases. Forensic Sci Int. 2013;227(1–3):52–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kawai C, Matsumori A. Dilated cardiomyopathy update: infectious-immune theory revisited. Heart Fail Rev. 2013;18(6):703–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A, et al. Update on myocarditis. J Am Coll Cardiol. 2012;59(9):779–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Yajima T, Knowlton KU. Viral myocarditis: from the perspective of the virus. Circulation. 2009;119(19):2615–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Byard RW. Forensic pathology and problems in determining cause of death. Forensic Sci Med Pathol. 2008;4(2):73–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Casali MB, Lazzaro A, Gentile G, Blandino A, Ronchi E, Zoja R. Forensic grading of myocarditis: an experimental contribution to the distinction between lethal myocarditis and incidental myocarditis. Forensic Sci Int. 2012;223(1–3):78–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Bowles NE, Ni J, Kearney DL, Pauschinger M, Schultheiss HP, McCarthy R, et al. Detection of viruses in myocardial tissues by polymerase chain reaction. Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol. 2003;42(3):466–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Gaaloul I, Riabi S, Harrath R, Evans M, Salem NH, Mlayeh S, et al. Sudden unexpected death related to enterovirus myocarditis: histopathology, immunohistochemistry and molecular pathology diagnosis at post-mortem. BMC Infect Dis. 2012;12:212.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Guarner J, Bhatnagar J, Shieh WJ, Nolte KB, Klein D, Gookin MS, et al. Histopathologic, immunohistochemical, and polymerase chain reaction assays in the study of cases with fatal sporadic myocarditis. Hum Pathol. 2007;38(9):1412–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Hufnagel G, Pankuweit S, Richter A, Schonian U, Maisch B. The European Study of Epidemiology and Treatment of Cardiac Inflammatory Diseases (ESETCID). First epidemiological results. Herz. 2000;25(3):279–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, et al. Predictors of outcome in patients with suspected myocarditis. Circulation. 2008;118(6):639–48.PubMedCrossRefGoogle Scholar
  21. 21.
    Koepsell SA, Anderson DR, Radio SJ. Parvovirus B19 is a bystander in adult myocarditis. Cardiovasc Pathol. 2012;21(6):476–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Kyto V, Vuorinen T, Saukko P, Lautenschlager I, Lignitz E, Saraste A, et al. Cytomegalovirus infection of the heart is common in patients with fatal myocarditis. Clin Infect Dis. 2005;40(5):683–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006;114(15):1581–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Martin AB, Webber S, Fricker FJ, Jaffe R, Demmler G, Kearney D, et al. Acute myocarditis. Rapid diagnosis by PCR in children. Circulation. 1994;90(1):330–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Schenk T, Enders M, Pollak S, Hahn R, Huzly D. High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J Clin Microbiol. 2009;47(1):106–10.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Bultmann BD, Klingel K, Sotlar K, Bock CT, Baba HA, Sauter M, et al. Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Hum Pathol. 2003;34(1):92–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Pankuweit S, Klingel K. Viral myocarditis: from experimental models to molecular diagnosis in patients. Heart Fail Rev. 2013;18(6):683–702.PubMedCrossRefGoogle Scholar
  28. 28.
    Soderlund-Venermo M, Hokynar K, Nieminen J, Rautakorpi H, Hedman K. Persistence of human parvovirus B19 in human tissues. Pathol Biol (Paris). 2002;50(5):307–16.CrossRefGoogle Scholar
  29. 29.
    Cassinotti P, Burtonboy G, Fopp M, Siegl G. Evidence for persistence of human parvovirus B19 DNA in bone marrow. J Med Virol. 1997;53(3):229–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Soderlund M, von ER, Haapasaari J, Kiistala U, Kiviluoto O, Hedman K. Persistence of parvovirus B19 DNA in synovial membranes of young patients with and without chronic arthropathy. Lancet. 1997;349(9058):1063–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Modrow S, Dorsch S. Antibody responses in parvovirus B19 infected patients. Pathol Biol (Paris). 2002;50(5):326–31.CrossRefGoogle Scholar
  32. 32.
    Aretz HT. Myocarditis: the Dallas criteria. Hum Pathol. 1987;18(6):619–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Loewe R. RNA-Isolation aus FFPE-Gewebe: Säulchen- und Bead-basierte Methoden. Laborwelt. 2011;12(5):38–9.Google Scholar
  34. 34.
    Heim A, Ebnet C, Harste G, Pring-Akerblom P. Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol. 2003;70(2):228–39.PubMedCrossRefGoogle Scholar
  35. 35.
    Baylis SA, Shah N, Minor PD. Evaluation of different assays for the detection of parvovirus B19 DNA in human plasma. J Virol Methods. 2004;121(1):7–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Rotbart HA. Enzymatic RNA amplification of the enteroviruses. J Clin Microbiol. 1990;28(3):438–42.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Mohamed N, Elfaitouri A, Fohlman J, Friman G, Blomberg J. A sensitive and quantitative single-tube real-time reverse transcriptase-PCR for detection of enteroviral RNA. J Clin Virol. 2004;30(2):150–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Hansen J, Corydon TJ, Palmfeldt J, Durr A, Fontaine B, Nielsen MN, et al. Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience. 2008;153(2):474–82.PubMedCrossRefGoogle Scholar
  39. 39.
    Donoso MO, Meyer R, Prosch S, Nitsche A, Leitmeyer K, Kallies R, et al. High prevalence of cardiotropic viruses in myocardial tissue from explanted hearts of heart transplant recipients and heart donors: a 3-year retrospective study from a German patients’ pool. J Heart Lung Transplant. 2005;24(10):1632–8.CrossRefGoogle Scholar
  40. 40.
    Kuethe F, Lindner J, Matschke K, Wenzel JJ, Norja P, Ploetze K, et al. Prevalence of parvovirus B19 and human bocavirus DNA in the heart of patients with no evidence of dilated cardiomyopathy or myocarditis. Clin Infect Dis. 2009;49(11):1660–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang X, Zhang G, Liu F, Han M, Xu D, Zang Y. Prevalence of human parvovirus B19 DNA in cardiac tissues of patients with congenital heart diseases indicated by nested PCR and in situ hybridization. J Clin Virol. 2004;31(1):20–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Rohrer C, Gartner B, Sauerbrei A, Bohm S, Hottentrager B, Raab U, et al. Seroprevalence of parvovirus B19 in the German population. Epidemiol Infect. 2008;136(11):1564–75.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Mahfoud F, Gartner B, Kindermann M, Ukena C, Gadomski K, Klingel K, et al. Virus serology in patients with suspected myocarditis: utility or futility? Eur Heart J. 2011;32(7):897–903.PubMedCrossRefGoogle Scholar
  44. 44.
    Lamparter S, Schoppet M, Pankuweit S, Maisch B. Acute parvovirus B19 infection associated with myocarditis in an immunocompetent adult. Hum Pathol. 2003;34(7):725–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Why HJ, Meany BT, Richardson PJ, Olsen EG, Bowles NE, Cunningham L, et al. Clinical and prognostic significance of detection of enteroviral RNA in the myocardium of patients with myocarditis or dilated cardiomyopathy. Circulation. 1994;89(6):2582–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Mizuno T, Nagamura H, Iwamoto KS, Ito T, Fukuhara T, Tokunaga M, et al. RNA from decades–old archival tissue blocks for retrospective studies. Diagn Mol Pathol. 1998;7(4):202–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Farragher SM, Tanney A, Kennedy RD, Paul HD. RNA expression analysis from formalin fixed paraffin embedded tissues. Histochem Cell Biol. 2008;130(3):435–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Mason JW, O’Connell JB, Herskowitz A, Rose NR, McManus BM, Billingham ME, et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med. 1995;333(5):269–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Mintz L, Drew WL. Relation of culture site to the recovery of nonpolio enteroviruses. Am J Clin Pathol. 1980;74(3):324–6.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Trine Skov Nielsen
    • 1
    • 2
  • Jakob Hansen
    • 2
  • Lars Peter Nielsen
    • 4
  • Ulrik Thorngren Baandrup
    • 1
  • Jytte Banner
    • 2
    • 3
  1. 1.Department of Clinical Medicine, Centre for Clinical Research, Vendsyssel HospitalAalborg UniversityHjørringDenmark
  2. 2.Department of Forensic MedicineAarhus UniversityAarhus NDenmark
  3. 3.Department of Forensic MedicineCopenhagen UniversityCopenhagen ØDenmark
  4. 4.Department of Virology/Epidemiology ResearchStatens Serum InstitutCopenhagen SDenmark

Personalised recommendations