Advertisement

Forensic Science, Medicine, and Pathology

, Volume 9, Issue 2, pp 194–207 | Cite as

Alcohol congener analysis and the source of alcohol: a review

  • Luke N. RoddaEmail author
  • Jochen Beyer
  • Dimitri Gerostamoulos
  • Olaf H. Drummer
Review

Abstract

For many decades traditional alcohol congener analysis has provided the concentrations of fermentation by-product congeners found in blood, to ascertain if the claims of an individual regarding the alcoholic beverage(s) they have consumed were feasible, assisting in cases where after-drinking is involved. However, this technique does not provide information on the exact alcoholic beverage(s) consumed. More recently, ingredient biomarker congeners specific to certain alcoholic beverages have been detected in blood, making it possible to identify the particular alcoholic beverage consumed and therefore the source of alcohol (albeit only for a limited number of beverages). This novel approach may reduce current limitations that exist with traditional methods of detecting fermentation by-product congeners, which restrict the use of alcohol congener analysis internationally and for other medico-legal scenarios. This review examines the forensic application of alcohol congener analysis in determining the source of alcohol and other techniques.

Keywords

Alcohol congener analysis After-drinking Congener Fermentation by-products Ingredient biomarkers Review 

Notes

Acknowledgments

The authors wish to acknowledge Kerry Johannes for her contribution in providing difficult to obtain articles and Dr Jennifer Pilgrim for her assistance with the progression of the article.

References

  1. 1.
    McAnalley BH, Aguayo EH. The chemistry of alcoholic beverages. In: Garriott JC, editor. Medicolegal aspects of alcohol. 5th ed. Tuscan: Lawyers and Judges Publishing Co.; 2008. p. 1–23.Google Scholar
  2. 2.
    Global status report on alcohol and health. Switzerland: World Health Organization; 2011.Google Scholar
  3. 3.
    Collins DJ, Lapsley HM. Counting the cost: estimates of the social costs of drug abuse in Australia 1998–9. Canberra: Commonwealth Department of Health and Ageing; 2002.Google Scholar
  4. 4.
    Byrnes JM, Doran CM, Shakeshaft AP. Cost per incident of alcohol-related crime in New South Wales. Drug Alcohol Rev. 2012;31(7):854–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Kress HC, Noonan R, Freire K, Marr A, Olson A. Top 20 violence and injury practice innovations since 1992. J Safety Res. 2012;43:257–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Kelly AT, Mozayani A. An overview of alcohol testing and interpretation in the 21st century. Eng J Pharm Pract. 2012;25(1):30–6.CrossRefGoogle Scholar
  7. 7.
    Jones AW. Evidence-based survey of the elimination rates of ethanol from blood with applications in forensic casework. Forensic Sci Int. 2010;200(1–3):1–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Widmark EMP. A micro method for determination of ethyl alcohol in the blood. Biochem Z. 1922;131:473–84.Google Scholar
  9. 9.
    Widmark EMP. The theoretical basis and practical application of medical-legal determination of alcohol. Berlin: Urban und Schwarzenberg. 1932. p. 1–140.Google Scholar
  10. 10.
    Elbel H, Schleyer F. Blood alcohol: the scientific basis of assessment of blood alcohol evidence obtained from road traffic offenses. 2nd ed. Stuttgart: Georg-Thieme-Verlag; 1956.Google Scholar
  11. 11.
    Krause D, Wehner HD. Blood alcohol/congeners of alcoholic beverages. Forensic Sci Int. 2004;144(2–3):177–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Brouwer IG. The Widmark formula for alcohol quantification. SADJ. 2004;59(10):427–8.PubMedGoogle Scholar
  13. 13.
    Andréasson R, Jones AW. The life and work of Erik M. P. Widmark. Am J Forensic Med Pathol. 1996;17(3):177–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Machata G. The routine examination of blood alcohol concentration using a gas chromatograph. Microchim Acta. 1962;50(4):691–700.CrossRefGoogle Scholar
  15. 15.
    Machata G. About the gas chromatographic determination of blood alcohol. Analysis of the vapor phase. Microchim Acta. 1964;52(2):262–71.CrossRefGoogle Scholar
  16. 16.
    Machata G. About the gas chromatographic determination of blood alcohol. Blutalkohol. 1967;4:252–60.Google Scholar
  17. 17.
    Machata G, Prokop L. About accompanying substances in the blood of alcoholic beverages. Blutalkohol. 1971;8:349–53.Google Scholar
  18. 18.
    Santillan-Valverde MC, Garcia-Garibay M. Congeners Biosynthesis during Alcoholic Fennentations. Rev Latinoam Microbiol. 1998;40(1–2):109–19.PubMedGoogle Scholar
  19. 19.
    Bonte W, Decker J, Busse J. Congener content of highproof alcoholic beverages. Blutalkohol. 1978;15(5):323–38.Google Scholar
  20. 20.
    Bonte W. Congener content of wine and similar beverages. Blutalkohol. 1978;15(6):392–404.Google Scholar
  21. 21.
    Bonte W. Congener content of German and foreign beers. Blutalkohol. 1979;16(2):108–24.Google Scholar
  22. 22.
    Bonte W. Alcoholic beverages impurities. Biogenesis, occurrence, pharmacology, physiology and assessment. Lübeck: Schmidt-Römhild; 1987.Google Scholar
  23. 23.
    Bonte W, Busse J. Determination of the type of beverage through gaschromatographic blood and urine analysis. Blutalkohol. 1980;17(1):49–57.Google Scholar
  24. 24.
    Bonte W, Stoppelmann G, Rudell E, Sprung R. Computerised detection of congeners of alcoholic beverages in body fluids. Blutalkohol. 1981;18(5):303–10.Google Scholar
  25. 25.
    Bonte W. Contributions to congener research. J Traffic Med. 1990;18(1):5–14.Google Scholar
  26. 26.
    Iffland R. Double blood sampling in cases of alleged or possible after-drink is not necessary. Blutalkohol. 2003;40(6):403–10.Google Scholar
  27. 27.
    Iffland R, Jones AW. Evaluating alleged drinking after driving—the hip-flask defence. Part 1. Double blood samples and urine-to-blood alcohol relationship. Med Sci Law. 2002;42(3):207–24.PubMedGoogle Scholar
  28. 28.
    Iffland R, Jones AW. Evaluating alleged drinking after driving—the hip-flask defence. Part 2. Congener analysis. Med Sci Law. 2003;43(1):39–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Jones AW. Medicolegal significance of congener analysis. J Traffic Med. 1990;18(1):1–3.Google Scholar
  30. 30.
    Jones AW. Top ten defence challenges among drinking drivers in Sweden. Med Sci Law. 1991;31(3):229–38.PubMedGoogle Scholar
  31. 31.
    Bonte W. Congener analysis. In: Encyclopedia of forensic sciences. Duesseldorf: Academic Press; 2000. p. 93–102.Google Scholar
  32. 32.
    Urban R, Liebhardt E, Spann W. Comparative studies on the concentrations of congeners of alcoholic beverages in stomach, blood and urine. Beitr Gerichtl Med. 1983;41:223–7.PubMedGoogle Scholar
  33. 33.
    Jungmann L, Grosse Perdekamp M, Bohnert M, Auwarter V, Pollak S. Complex suicide by ethanol intoxication and inhalation of fire fumes in an old lady: interdisciplinary elucidation including post-mortem analysis of congener alcohols. Forensic Sci Int. 2011;209(1):e11–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Lachenmeier DW, Lachenmeier K, Madea B, Mußhoff F. Multivariate analysis of the minor component concentrations in blood and urine to determine the brand of spirits consumed. In: GTFCh-Symposium Praxis der Forensischen Toxikologie, Vol 1; 2006. p. 65–77.Google Scholar
  35. 35.
    Schulz K, Dreßler J, Sohnius E-M, Lachenmeier DW. Determination of volatile constituents in spirits using headspace trap technology. J Chromatogr A. 2007;1145(1–2):204–9.PubMedGoogle Scholar
  36. 36.
    Schulz K, Schlenz K, Malt S, Metasch R, Romhild W, Dressler J, et al. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for the quantitative determination of the characteristic flavouring agent eugenol in serum samples after enzymatic cleavage to validate post-offence alcohol drinking claims. J Chromatogr A. 2008;1211(1–2):113–9.PubMedGoogle Scholar
  37. 37.
    Schulz K, Schlenz K, Metasch R, Malt S, Römhild W, Dreßler J. Determination of anethole in serum samples by headspace solid-phase microextraction-gas chromatography-mass spectrometry for congener analysis. J Chromatogr A. 2008;1200(2):235–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Schulz K, Bertau M, Schlenz K, Malt S, Dreßler J, Lachenmeier DW. Headspace solid-phase microextraction-gas chromatography-mass spectrometry determination of the characteristic flavourings menthone, isomenthone, neomenthol and menthol in serum samples with and without enzymatic cleavage to validate post-offence alcohol drinking claims. Anal Chim Acta. 2009;646(1–2):128–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Brahams D. Back calculation of alcohol: the “hip-flask defence”. Lancet. 1988;2(8626–8627):1504.PubMedCrossRefGoogle Scholar
  40. 40.
    Lewis MJ. The individual and the estimation of his blood alcohol concentration from intake, with particular reference to the “hip-flask” drink. J Forensic Sci Soc. 1986;26(1):19–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Wall IF, Karch SB. Traffic medicine. In: Stark MM, editor. Clinical forensic medicine: a physician’s guide. 3rd ed. New York: Humana Press; 2011. p. 425–60.CrossRefGoogle Scholar
  42. 42.
    Hampsire Police. 02511 Procedure—hip flask defence. England: Hampshire; 2011.Google Scholar
  43. 43.
    Road Safety Act 1986, Version No. 124, Victoria, Australia. Stat. 127 of 1986; 2010.Google Scholar
  44. 44.
    Crimes Act, Section 318, Victoria, Australia; 1958.Google Scholar
  45. 45.
    Gilg T. Alcohol impaired driving. Judgement and expert evidence in forensic practice, part 1. Rechtsmedizin. 2005;15(1):39–50.CrossRefGoogle Scholar
  46. 46.
    Gilg T. Alcohol impaired driving. Judgement and expert evidence in forensic practice, part 2. Rechtsmedizin. 2005;15(2):97–112.CrossRefGoogle Scholar
  47. 47.
    Jones AW. Biochemical and Physiological Research on the Disposition and Fate of Ethanol in the Body. In: Garriott JC, editor. Medicolegal aspects of alcohol. 5th ed. Tuscan: Lawyers and Judges Publishing Co.; 2008. p. 47–155.Google Scholar
  48. 48.
    Piekoszewski W, Gubala W. Inter- and intra-individual variability of ethanol pharmacokinetics over a long period of time. Pol J Pharmacol. 2000;52(5):389–95.PubMedGoogle Scholar
  49. 49.
    Jachau K, Römhild J, Bartels H, Krause D, Wittig H. Evidential value of second blood alcohol samples in cases of so called double blood sampling to assess post offence drinking claims. Blutalkohol. 2003;40(6):411–9.Google Scholar
  50. 50.
    NSW Police. Drink spiking—myths and facts; 2006.Google Scholar
  51. 51.
    Department of Employment. Drink spiking: what is drink spiking? In: Queensland Government, editor; 2010.Google Scholar
  52. 52.
    Drug and Alcohol Office Government of Western Australia. Stay safe, know about, drink spiking. www.drugaware.com.au. Accessed January 2012.
  53. 53.
    Wells D, Phillips M. Importance of excessive ethanol ingestion in the patient with suspected drink spiking. Emerg Med Australas. 2009;21(3):167–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Quigley P, Lynch DM, Little M, Murray L, Lynch AM, O’Halloran SJ. Prospective study of 101 patients with suspected drink spiking. Emerg Med Australas. 2009;21(3):222–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Greene SL, Shiew CM, Streete P, Mustchin SJ, Hugget D, Earl B, et al. What’s being used to spike your drink? Alleged spiked drink cases in inner city London. Postgrad Med J. 2007;83(986):754–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Hughes H, Peters R, Davies G, Griffiths K. A study of patients presenting to an emergency department having had a “spiked drink”. Emerg Med J. 2007;24(2):89–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Scott-Ham M, Burton FC. A study of blood and urine alcohol concentrations in cases of alleged drug-facilitated sexual assault in the United Kingdom over a 3-year period. J Clin Forensic Med. 2006;13(3):107–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Anonymous. Alcohol, not drugs, poses biggest date rape risk. New Sci. 2006;189(2533):13.Google Scholar
  59. 59.
    Langford NJ, Marshall T, Ferner RE. The lacing defence: double blind study of thresholds for detecting addition of ethanol to drinks. BMJ. 1999;319(7225):1610.PubMedCrossRefGoogle Scholar
  60. 60.
    Butzbach DM. The influence of putrefaction and sample storage on post-mortem toxicology results. Forensic Sci Med Pathol. 2010;6(1):35–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Beyer J, Vo TN, Gerostamoulos D, Drummer OH. Validated method for the determination of ethylglucuronide and ethylsulfate in human urine. Anal Bioanal Chem. 2011;400(1):189–96.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao H, Zhuo XY, Yan H, Shen BH. Determination of ethyl glucuronide in blood and urine by LC-MS/MS. Fa Yi Xue Za Zhi. 2010;26(4):269–72.PubMedGoogle Scholar
  63. 63.
    Kronstrand R, Brinkhagen L, Nystrom FH. Ethyl glucuronide in human hair after daily consumption of 16 or 32 g of ethanol for 3 months. Forensic Sci Int. 2011;215(1):51–5.Google Scholar
  64. 64.
    Hoiseth G, Karinen R, Johnsen L, Normann PT, Christophersen AS, Morland J. Disappearance of ethyl glucuronide during heavy putrefaction. Forensic Sci Int. 2008;176(2–3):147–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Bonte W, Hey F. Concerning storage alterations of the congener content of blood and urine samples. Blutalkohol. 1983;20(2):109–22.Google Scholar
  66. 66.
    Jung A, Jung H, Auwärter V, Pollak S, Fárr AM, Hecser L, et al. Volatile congeners in alcoholic beverages: analysis and forensic significance. Rom J Leg Med. 2010;18(4):265–70.CrossRefGoogle Scholar
  67. 67.
    Cortacero-Ramírez S, Hernáinz-Bermúdez de Castro M, Segura-Carretero A, Cruces-Blanco C, Fernández-Gutiérrez A. Analysis of beer components by capillary electrophoretic methods. TrAC Trends Anal Chem. 2003;22(7):440–55.Google Scholar
  68. 68.
    Belitz HD, Grosch W. Alcoholic Drinks. In: Belitz HD, Grosch W, editors. Lehrbuch der Lebensmittelchemie. Berlin: Springer; 1992. p. 805–48.Google Scholar
  69. 69.
    Stroehmer G, Fauth R. Extraktfreie und extraktarme Spirituosen. In: Kolb E, editor. Spirituosentechnologie. Hamburg: B. Behr’s Verlag; 2004. p. 43–147.Google Scholar
  70. 70.
    Greizerstein HB. Congener contents of alcoholic beverages. J Stud Alcohol. 1981;42(11):1030–7.PubMedGoogle Scholar
  71. 71.
    Bonte W, Russmeyer P. Normal distribution of congeners in alcoholic beverages. Beitr Gerichtl Med. 1983;42:387–94.Google Scholar
  72. 72.
    Simpkins WA. Congener profiles in the detection of illicit spirits. J Sci Food Agric. 1985;36(5):367–76.CrossRefGoogle Scholar
  73. 73.
    Schutz H, Schneider WR. Congener profile and ethanol concentration of mulled wine (Claret). Blutalkohol. 1986;23(3):203–7.PubMedGoogle Scholar
  74. 74.
    Huckenbeck W, Freudenstein P, Bonte W. Zum Begleitstoffmuster cubanischer alkoholischer Getränke. German. Adli Tip Derg. 1990;6:73–80.Google Scholar
  75. 75.
    Murphree HB, Price LM, Greenberg LA. Effect of congeners in alcoholic beverages on the incidence of nystagmus. Q J Stud Alcohol. 1966;27(2):201–13.PubMedGoogle Scholar
  76. 76.
    Gonzalez-Arjona D, Gonzalez-Gallero V, Pablos F, Gonzalez AG. Authentication and differentiation of Irish whiskeys by higher-alcohol congener analysis. Anal Chim Acta. 1999;381(2–3):257–64.CrossRefGoogle Scholar
  77. 77.
    Ehrlich F. Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweißaufbau der Hefe. Ber Dtsch Chem Ges. 1907;40(1):1027–47.CrossRefGoogle Scholar
  78. 78.
    Buiatti S. Beer composition: an overview. In: Beer in health and disease prevention. San Diego: Academic Press; 2009. p. 212–25.Google Scholar
  79. 79.
    von Fellenberg T. Ueber den Ursprung des Methylalkohols in Trinkbranntweinen. Mitt Geb Lebensm. 1914;5:172–8.Google Scholar
  80. 80.
    Reazin G, Scales H, Andreasen A. Mechanism of major congener formation in alcoholic grain fermentations. J Agric Food Chem. 1970;18(4):585–9.CrossRefGoogle Scholar
  81. 81.
    Reazin G, Scales H, Andreasen A. Production of higher alcohols from threonine and isoleucine in alcoholic fermentations of different types of grain mash. J Agric Food Chem. 1973;21(1):50–4.CrossRefGoogle Scholar
  82. 82.
    D’Amore T, Russell I, Stewart GG. Sugar utilization by yeast during fermentation. J Ind Microbiol Biot. 1989;4(4):315–23.CrossRefGoogle Scholar
  83. 83.
    Carmona-gutierrez D, Sommer C, Andryushkova A, Kroemer G, Madeo F. A higher spirit: avoiding yeast suicide during alcoholic fermentation. Cell Death Differ. 2012;19(6):913–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Martiez-Force E, Benitez T. Changes in yeast amino acid pool with respiratory versus fermentative metabolism. Biotechnol Bioeng. 1992;40(6):643–9.PubMedCrossRefGoogle Scholar
  85. 85.
    de Miranda MB, Martins NGS, Belluco AES, Horii J, Alcarde AR. Chemical profile of aguardente—Brazilian sugar cane alcoholic drink—aged in oak casks. Ciência e Tecnologia de Alimentos. 2008;28:84–9.CrossRefGoogle Scholar
  86. 86.
    Lachenmeier DW, Musshoff F. Volatile congeners in alcoholic beverages: retrospective trends, batch comparisons and current concentration ranges. Rechtsmedizin. 2004;14(6):454–62.CrossRefGoogle Scholar
  87. 87.
    Huckenbeck W, Freudenstein P, Jeszenszky E, Scheil H. Congeners in spirits produced by moonshine distillers. Blutalkohol. 2003;40(4):294–301.Google Scholar
  88. 88.
    Greenshields RN. Volatiles in home-brewed beers and wines. J Sci Food Agric. 1974;25(10):1307–12.PubMedCrossRefGoogle Scholar
  89. 89.
    Lachenmeier DW, Haupt S, Schulz K. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products. Regul Toxicol Pharm. 2008;50(3):313–21.CrossRefGoogle Scholar
  90. 90.
    International Center for Alcohol Policies. What is a “standard drink”?. Washington: International Center for Alcohol Policies; 1995.Google Scholar
  91. 91.
    Miller MA, Rosin A, Levsky ME, Patel MM, Gregory TJ, Crystal CS. Does the clinical use of ethanol-based hand sanitizer elevate blood alcohol levels? A prospective study. Am J Emerg Med. 2006;24(7):815–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Brown T, Gamon S, Tester P, Martin R, Hosking K, Bowkett G, et al. Can alcohol-based hand-rub solutions cause you to lose your driver’s license? Comparative cutaneous absorption of various alcohols. Antimicrob Agents Chemother. 2007;51(3):1107–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Kramer A, Below H, Bieber N, Kampf G, Toma C, Huebner N-O, et al. Quantity of ethanol absorption after excessive hand disinfection using three commercially available hand rubs is minimal and below toxic levels for humans. BMC Infect Dis. 2007;7(1):117.PubMedCrossRefGoogle Scholar
  94. 94.
    Kramer A, Below H, Bieber N. Ethanol absorption after excessive hygienic and surgical hand disinfection with ethanol-based hand rubs. Round Table Ser R Soc Med. 2007;85:50–3.Google Scholar
  95. 95.
    Peschel O, Bauer MF, Gilg T, Meyer LV, von Meyer L. Change in congener analysis caused by percutaneous absorption of propanol-containing antiseptics. Blutalkohol. 1992;29(3):172–84.PubMedGoogle Scholar
  96. 96.
    Wittmann S, Gilg T, Dietz H-G, Grantzow R, Peschel O. vML. Isopropanol- and acetone serum levels after presurgical disinfection with isopropanol containing antiseptics. Blutalkohol. 1992;29:326–35.PubMedGoogle Scholar
  97. 97.
    Below H, Below E, Bockholdt B, Bieber N, Nicolai T, Usche A, et al. Does the application of propanols used for hand disinfection affect the congeners analysis? 48th Annual Meeting of TIAFT. Germany: Bonn; 2010.Google Scholar
  98. 98.
    Kawai T, Okada Y, Odachi T, Horiguchi S, Zhang ZW, Moon CS, et al. Monitoring of occupational exposure to 1-butanol by diffusive sampling and urinalysis. Int Arch Occup Environ Health. 1997;69(4):266–72.PubMedCrossRefGoogle Scholar
  99. 99.
    Grüner O, Bilzer N. Methanol content of fruit-juices. Its significance in congener analysis. Blutalkohol. 1983;20:241–52.Google Scholar
  100. 100.
    Lindinger W, Taucher J, Jordan A, Hansel A, Vogel W. Endogenous production of methanol after the consumption of fruit. Alcohol Clin Exp Res. 1997;21(5):939–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Urban R, Tutsch-Bauer E, Schuck M, Troger HD. Congener analysis after the consumption of fruit-juices with and without the addition of Ethanol. Blutalkohol. 1984;21(1):65–70.PubMedGoogle Scholar
  102. 102.
    Wehner F, Moosmayer A, Wehner HD. Box size, liquid volume, ethanol concentration and congener spectrum of chocolates containing alcohol. Blutalkohol. 2000;37:440–8.Google Scholar
  103. 103.
    Bilzer N, Schmutte P, Jehs M, Penners B. Kinetics of aliphatic alcohols (methanol, propanol-1 and isobutanol) in the presence of alcohol in the human body. Blutalkohol. 1990;27(6):385–409.PubMedGoogle Scholar
  104. 104.
    Wehner HD, Schieffer MC. Elimination properties of the congener n-propanol. Blutalkohol. 1989;26(1):28–41.PubMedGoogle Scholar
  105. 105.
    Wehner HD, Schieffer MC, Hauswirth U. Disposition properties of isobutanol during lacking and simultaneous ethanol exposition. Blutalkohol. 1998;35(6):422–7.Google Scholar
  106. 106.
    Bilzer N, Penners B. Metabolism and rate of excretion of the congeners propanol-l and isobutanol following the consumption of the “Chivas Regal” brand whiskey. Blutalkohol. 1985;22(2):140–5.PubMedGoogle Scholar
  107. 107.
    Bilzer N, Penners B, Grüner O. Studies about the course of concentration in blood for congener Propanol-1 and Isobutanol after drinking overseas rum (“Captain Morgan”). Blutalkohol. 1985;22(2):146–51.PubMedGoogle Scholar
  108. 108.
    Sprung R, Bonte W, Rudell E. Determination of congener substances of alcoholic beverages and their metabolites in blood and urine samples. Beitr Gerichtl Med. 1983;41:219–22.PubMedGoogle Scholar
  109. 109.
    Roberts C, Robinson SP. Alcohol concentration and carbonation of drinks: the effect on blood alcohol levels. J Forensic Leg Med. 2007;14(7):398–405.PubMedCrossRefGoogle Scholar
  110. 110.
    Posey D, Mozayani A. The estimation of blood alcohol concentration. Forensic Sci Med Pathol. 2007;3(1):33–9.Google Scholar
  111. 111.
    Brick J. Standardization of alcohol calculations in research. Alcohol Clin Exp Res. 2006;30(8):1276–87.PubMedCrossRefGoogle Scholar
  112. 112.
    Watson PE, Watson ID, Batt RD. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr. 1980;33(1):27–39.PubMedGoogle Scholar
  113. 113.
    Watson PE, Watson ID, Batt RD. Prediction of blood alcohol concentrations in human subjects; updating the Widmark equation. J Stud Alcohol. 1981;42(7):547–56.PubMedGoogle Scholar
  114. 114.
    Barbour AD. Simplified estimation of Widmark “r” values by the method of Forrest. Sci Justice. 2001;41(1):53–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Seidl S, Jensen U, Alt A. The calculation of blood ethanol concentrations in males and females. Int J Legal Med. 2000;114(1):71–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Kamil IA, Smith JN, Williams RT. Studies in detoxication: the metabolism of aliphatic alcohols; the glucuronic acid conjugation of acyclic aliphatic alcohols. Biochem J. 1953;53(1):129–36.PubMedGoogle Scholar
  117. 117.
    Greenberg L. The appearance of some congeners of alcoholic beverages and their metabolites in blood. Q J Stud Alcohol. 1970;5(5):20–5.PubMedGoogle Scholar
  118. 118.
    Bonte W, Rudell E, Sprung R, Frauenrath C, Blanke E, Kupilas G, et al. Experimental investigations concerning the blood-analytical detection of small doses of higher aliphatic alcohols in man. Blutalkohol. 1981;18:399–411.Google Scholar
  119. 119.
    Iffland R, Balling P, Oehmichen M, Lieder F, Norpoth T. Methanol, isopropanol, n-propanol—endogen formation by influence of ethanol? Blutalkohol. 1989;26:87–97.PubMedGoogle Scholar
  120. 120.
    Sticht G, Käferstein H. Chemical synthesis and gas chromatographic determination of alkyl glucuronides. Rechtsmedizin. 1999;9(5):184–9.CrossRefGoogle Scholar
  121. 121.
    Haffner HT, Banger M, Graw M, Besserer K, Brink T. The kinetics of methanol elimination in alcoholics and the influence of ethanol. Forensic Sci Int. 1997;89(1–2):129–36.PubMedCrossRefGoogle Scholar
  122. 122.
    Roine RP, Eriksson CJ, Ylikahri R, Penttilä A, Salaspuro M. Methanol as a marker of alcohol abuse. Alcohol Clin Exp Res. 1989;13(2):172–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Musshoff F, Daldrup T, Bonte W, Leitner A, Nimmerichter A, Walter H, et al. Elimination of methanol independent from ethanol in chronic alcoholics. Blutalkohol. 1995;32:317–36.PubMedGoogle Scholar
  124. 124.
    Musshoff F, Daldrup T. Determination of biological markers for alcohol abuse. J Chromatogr B Biomed App. 1998;713(1):245–64.CrossRefGoogle Scholar
  125. 125.
    Bonte W, Sprung R, Rudell E, Frauenrath C, Blanke E, Kupilas G, et al. Experimental investigations concerning the urine-analytical detection of small doses of higher aliphatic alcohols in man. Blutalkohol. 1981;18:412–26.Google Scholar
  126. 126.
    Aylward GH, Findlay TJV. SI chemical data. Milton: Wiley; 2002.Google Scholar
  127. 127.
    Alger DB. The water solubility of 2-butanol: a widespread error. J Chem Ed. 1991;68(11):939.CrossRefGoogle Scholar
  128. 128.
    O’Neal CL, Wolf CE, Levine B, Kunsman G, Poklis A. Gas chromatographic procedures for determination of ethanol in postmortem blood using t-butanol and methyl ethyl ketone as internal standards. Forensic Sci Int. 1996;83(1):31–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Wigmore JG. The distribution of ethanol in postmortem blood samples. J Forensic Sci. 1993;38(5):1019–21.PubMedGoogle Scholar
  130. 130.
    Römhild W, Krause D, Bartels H, Wittig H. Begleitstoffanalyse mittels “Headspace”-GC/MS. Blutalkohol. 1998;35:10–8.Google Scholar
  131. 131.
    Bilzer N, Gruner O. Critical assessment regarding determination of aliphatic alcohols (congeners in alcoholic drinks) in blood with the aid of head-space-analysis. Blutalkohol. 1983;20:411–21.Google Scholar
  132. 132.
    Lachenmeier DW, Nerlich U, Kuballa T. Automated determination of ethyl carbamate in stone-fruit spirits using headspace solid-phase microextraction and gas chromatography-tandem mass spectrometry. J Chromatogr A. 2006;1108(1):116–20.PubMedCrossRefGoogle Scholar
  133. 133.
    Schmitt G, Skopp G, Aderjan R, Mattern R. Congener analysis in a drinking trial with unusually high alcohol content. Blutalkohol. 1995;32(6):337–43.PubMedGoogle Scholar
  134. 134.
    Griffith H, Marotta L, Tipler A, Grosser Z. Advances in instrumental techniques for air analysis. In: Symposium on air quality measurement methods and technology 2004, Cary, NC; 2004.Google Scholar
  135. 135.
    Felby S, Nielsen E. Congener production in blood samples during preparation and storage. Blutalkohol. 1995;32(1):50–8.PubMedGoogle Scholar
  136. 136.
    Jones AW, Hylen L, Svensson E, Helander A. Storage of specimens at 4 degrees C or addition of sodium fluoride (1%) prevents formation of ethanol in urine inoculated with Candida albicans. J Anal Toxicol. 1999;23(5):333–6.PubMedGoogle Scholar
  137. 137.
    Lewis RJ, Johnson RD, Angier MK, Vu NT. Ethanol formation in unadulterated postmortem tissues. Forensic Sci Int. 2004;146(1):17–24.PubMedCrossRefGoogle Scholar
  138. 138.
    Dick GL, Stone HM. Alcohol loss arising from microbial contamination of drivers’ blood specimens. Forensic Sci Int. 1987;34(1–2):17–27.PubMedCrossRefGoogle Scholar
  139. 139.
    Iffland R, Balling MP, Börsch G. Zur Wertung erhöhter Spiegel von GGT, CDT, Methanol, Aceton und Isopropanol im Blut alkoholauffälliger Kraftfahrer. Blutalkohol. 1994;31:279–314.Google Scholar
  140. 140.
    Petersen TH, Williams T, Nuwayhid N, Harruff R. Postmortem detection of isopropanol in ketoacidosis. J Forensic Sci. 2012;57(3):674–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Iffland R, Schmidt V, Oehmichen M, Schmidtmann U, Norpoth T. Acetone and isopropanol concentration in blood in relation to acute and chronic alcohol consumption (alcoholism). Blutalkohol. 1988;25(2):80–96.PubMedGoogle Scholar
  142. 142.
    Schulz K. Working group: Alcohol consumption and aftertaste. GTFCH: Dresden, Germany. 2011. www.gtfch.org/cms/index.php/alkohol-und-nachtrunk. Accessed 6 Oct 2011.
  143. 143.
    Schulz K, Teske J, Gilg T, Aderjan R, Herbold M. Inventory of congener analysis and results of first proficiency tests. Blutalkohol. 2006;43(4):269–76.Google Scholar
  144. 144.
    Musshoff F, Wittwer S, Madea B. The meaning of congener analyses in hip-flask defence in court: a contribution concerning supply investigation. Blutalkohol. 2008;45(6):345–54.Google Scholar
  145. 145.
    Rhodes CN, Heaton K, Goodall I, Brereton PA. Gas chromatography carbon isotope ratio mass spectrometry applied to the detection of neutral alcohol in Scotch whisky: an internal reference approach. Food Chem. 2009;114(2):697–701.CrossRefGoogle Scholar
  146. 146.
    Yilmaztekin M, Cabaroglu T. Confirmatory method for the determination of volatile congeners and methanol in Turkish raki according to European union regulation (EEC) no. 2000R2870: single-laboratory validation. J AOAC Int. 2011;94(2):611–7.PubMedGoogle Scholar
  147. 147.
    Styger G, Prior B, Bauer FF. Wine flavor and aroma. J Ind Microbiol Biot. 2011;38(9):1145–59.CrossRefGoogle Scholar
  148. 148.
    Siqueira PB, Bolini HMA, Macedo GA. Polyphenols and antioxidant properties in forced and naturally aged Brazilian beer. J Brew Distill. 2011;2(3):45–50.Google Scholar
  149. 149.
    Plutowska B, Biernacka P, Wardencki W. Identification of volatile compounds in raw spirits of different organoleptic quality. J I Brew. 2010;116(4):433–9.CrossRefGoogle Scholar
  150. 150.
    Perestrelo R, Barros AS, Câmara JS, Rocha SM. In-depth search focused on furans, lactones, volatile phenols, and acetals as potential age markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction. J Agric Food Chem. 2011;59(7):3186–204.PubMedCrossRefGoogle Scholar
  151. 151.
    Masino F, Montevecchi G, Riponi C, Antonelli A. Composition of some commercial grappas (grape marc spirit): the anomalous presence of 1,1-diethoxy-3-methylbutane: a case study. Euro Food Res Technol. 2009;228(4):565–9.CrossRefGoogle Scholar
  152. 152.
    Schulz K, Klaus Mueller R, Engewald W, Graefe A, Dreßler J. Determination of aroma compounds from alcoholic beverages in spiked blood samples by means of dynamic headspace GC–MS. Chromatographia. 2007;66(11):879–86.CrossRefGoogle Scholar
  153. 153.
    Intelmann D, Haseleu G, Hofmann T. LC-MS/MS quantitation of hop-derived bitter compounds in beer using the ECHO technique. J Agric Food Chem. 2009;57(4):1172–82.PubMedCrossRefGoogle Scholar
  154. 154.
    Hughes PS. Preparative regime for the purification of bitter acids derived from hops (Humulus lupulus L.). J Chromatogr A. 1996;731(1–2):327–30.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luke N. Rodda
    • 1
    Email author
  • Jochen Beyer
    • 1
  • Dimitri Gerostamoulos
    • 1
  • Olaf H. Drummer
    • 1
  1. 1.Department of Forensic MedicineMonash UniversitySouthbankAustralia

Personalised recommendations