Forensic Science, Medicine, and Pathology

, Volume 8, Issue 3, pp 280–284 | Cite as

Applicability of molecular markers to determine parasitic infection origins in the animal trade: a case study from Sarcoptes mites in wildebeest

  • Samer Alasaad
  • Rolf K. Schuster
  • Francis Gakuya
  • Mohamed Theneyan
  • Michael J. Jowers
  • Sandra Maione
  • Annarita Molinar Min
  • Ramón C. Soriguer
  • Luca Rossi
Case Report

Abstract

The development of non-manipulative molecular tools to determine the origin of parasite infections in the animal trade (if infected before their export or import) is of great interest worldwide for both the animal trade industry and for animal welfare. Molecular tools have a wide range of applications, including forensic identification, wildlife preservation and conservation, veterinary public health protection, and food safety. Nonetheless, genetic markers were not reported to detect the source of infection in the animal trade. In this study we tested the applicability of molecular tools to detect the origin of Sarcoptes mite infection of wildebeest imported by the United Arab Emirate (UAE) from Tanzania. Using one multiplex of seven microsatellite markers and control samples from UAE, Kenya and Italy, we demonstrated the usefulness of the multiplex STR-typing as a molecular tool of pivotal interest to help commercialist, authorities, and conservationists, to identify the geographical origin of parasitic infections.

Keywords

Sarcoptes scabiei Genetic structure Microsatellite markers Forensic parasitology Infection source Tanzania UAE Kenya Italy 

Notes

Acknowledgments

We would like to thank R. Rasero and D. Soglia (Università degli Studi di Torino, Italy) for offering laboratory infrastructure. The experiments comply with the current laws of the countries in which the experiments were performed. The research was supported by RNM-6400, Projecto de Excelencia (Junta de Andalucia, Spain), and Juan de la Cierva Grant.

References

  1. 1.
    Jobin RM, Patterson D, Zhang Y. DNA typing in populations of mule deer for forensic use in the Province of Alberta. Forensic Sci Int Genet. 2008;2:190–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Heaton MP, Keen JE, Clawson ML, Harhay GP, Bauer N, Shultz C, Green BT, Durso L, Chitko-McKown CG, Laegreid WW. Use of bovine single nucleotide polymorphism markers to verify sample tracking in beef processing. J Am Vet Med Assoc. 2005;226:1311–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Robino C, Menegon S, Caratti S, Sona B, Gino S, Torre C. Forensic application of a multiplex PCR system for the typing of pig STRs. Forensic Sci Int Genet Suppl Ser. 2008;1:614–5.CrossRefGoogle Scholar
  4. 4.
    Alacs EA, Georges A, FitzSimmons NN, Robertson J. DNA detective: a review of molecular approaches to wildlife forensics. Forensic Sci Med Pathol. 2010;6:180–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Seng PM, Laporte R. Animal welfare: the role and perspectives of the meat and livestock sector. Rev Sci Tech. 2005;24:613–23.PubMedGoogle Scholar
  6. 6.
    Tordoff MG, Alarcón LK, Byerly EA, Doman SA. Mice acquire flavor preferences during shipping. Physiol Behav. 2005;86:480–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Walton SF, Holt DC, Currie BJ, Kemp DJ. Scabies: new future for a neglected disease. Adv Parasitol. 2004;57:309–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Walton SF, Currie BJ. Problems in diagnosing scabies, a global disease in human and animal populations. Clin Microbiol Rev. 2007;20:268–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Briggs RE, Frank GH, Purdy CW, Zehr ES, Loan RW. Rapid spread of a unique strain of Pasteurella haemolytica serotype 1 among transported calves. Am J Vet Res. 1998;59:401–5.PubMedGoogle Scholar
  10. 10.
    Polley L. Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin. Int J Parasitol. 2005;35:1279–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Alasaad S, Walton S, Rossi L, Bornstein S, Abu-Madi M, Soriguer RC, Fitzgerald S, Zhu XQ, Zimmermann W, Ugbomoiko US, Pei KJC, Heukelbach J. Sarcoptes-world molecular network (Sarcoptes-WMN): integrating research on scabies. Int J Infect Dis. 2011;15:294–7.CrossRefGoogle Scholar
  12. 12.
    OObasanjo OO, Wu P, Conlon M, Karanfil LV, Pryor P, Moler G, Anhalt G, Chaisson RE, Perl TM. An outbreak of scabies in a teaching hospital: lessons learned. Infect Control Hosp Epidemiol. 2001;22:13–8.CrossRefGoogle Scholar
  13. 13.
    Heukelbach J, Feldmeier H. Scabies. Lancet. 2006;367:67–1774.CrossRefGoogle Scholar
  14. 14.
    Pence DB, Ueckermann E. Sarcoptic mange in wildlife. Rev Sci Tech Off Int Epiz. 2002;21:385–98.Google Scholar
  15. 15.
    Alasaad S, Rossi L, Soriguer RC, Rambozzi L, Soglia D, Pérez JM, Zhu XQ. Sarcoptes mite from collection to DNA extraction: the lost realm of the neglected parasite. Parasitol Res. 2009;104:723–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Fain A. Étude de la variabilité de Sarcoptes scabiei avec une revisiondes Sarcoptidae. Acta Zool Pathol Antverp. 1968;47:1–196.Google Scholar
  17. 17.
    Alasaad S, Rossi L, Maione S, Sartore S, Soriguer RC, Pérez JM, Rasero R, Zhu XQ, Soglia D. HotSHOT Plus ThermalSHOCK, a new and efficient technique for preparation of PCR-quality Sarcoptes mite genomic DNA. Parasitol Res. 2008;103:1455–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Alasaad S, Soglia D, Sarasa M, Soriguer RC, Pérez JM, Granados JE, Rasero R, Zhu XQ, Rossi L. Skin-scale genetic structure of Sarcoptes scabiei populations from individual hosts: empirical evidence from Iberian ibex-derived mites. Parasitol Res. 2008;104:101–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Raymond M, Rousset F. GENEPOP version 1.2: a population genetics software for exact test and ecumenicism. J Hered. 1995;86:248–9.Google Scholar
  20. 20.
    Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting geno-typing errors in microsatellite data. Mol Ecol Notes. 2004;4:535–8.CrossRefGoogle Scholar
  21. 21.
    Kalinowski ST, Taper ML. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet. 2006;7:991–5.CrossRefGoogle Scholar
  22. 22.
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.PubMedGoogle Scholar
  23. 23.
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Estes RD. Behaviour and life history of the wildebeest (Connochaetes taurinus Burchelli). Nature. 1966;212:999–1000.CrossRefGoogle Scholar
  25. 25.
    Tadano R, Nishibori M, Tsudzuki M. High accuracy of genetic discrimination among chicken lines obtained through an individual assignment test. Anim Genet. 2008;39:567–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Rasero R, Rossi L, Maione S, Sacchi P, Rambozzi L, Sartore S, Soriguer R, Spalenza V, Alasaad S. Host taxon-derived Sarcoptes mites in European wildlife animals, revealed by microsatellite markers. Biol Conserv. 2010;143:1269–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Samer Alasaad
    • 1
    • 2
    • 6
  • Rolf K. Schuster
    • 3
  • Francis Gakuya
    • 4
  • Mohamed Theneyan
    • 5
  • Michael J. Jowers
    • 2
  • Sandra Maione
    • 6
  • Annarita Molinar Min
    • 6
  • Ramón C. Soriguer
    • 2
  • Luca Rossi
    • 6
  1. 1.Institute of Evolutionary Biology and Environmental Studies (IEU)University of ZürichZürichSwitzerland
  2. 2.Estación Biológica de DoñanaConsejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
  3. 3.Central Veterinary Research LaboratoryDubaiUnited Arab Emirates
  4. 4.Department of Veterinary and Capture ServicesKenya Wildlife ServiceNairobiKenya
  5. 5.Al Wasl Veterynary ClinicDubaiUnited Arab Emirates
  6. 6.Dipartimento di Produzioni AnimaliEpidemiologia ed Ecologia, Università degli Studi di TorinoGrugliascoItaly

Personalised recommendations