Advertisement

Forensic Science, Medicine, and Pathology

, Volume 7, Issue 4, pp 379–392 | Cite as

Forensic entomology: applications and limitations

  • J. Amendt
  • C. S. Richards
  • C. P. Campobasso
  • R. Zehner
  • M. J. R. Hall
Continuing Medical Education Review

Abstract

Forensic entomology is the science of collecting and analysing insect evidence to aid in forensic investigations. Its main application is in the determination of the minimum time since death in cases of suspicious death, either by estimating the age of the oldest necrophagous insects that developed on the corpse, or by analysing the insect species composition on the corpse. In addition, toxicological and molecular examinations of these insects may help reveal the cause of death or even the identity of a victim, by associating a larva with its last meal, for example, in cases where insect evidence is left at a scene after human remains have been deliberately removed. Some fly species can develop not only on corpses but on living bodies too, causing myiasis. Analysis of larvae in such cases can demonstrate the period of neglect of humans or animals. Without the appropriate professional collection of insect evidence, an accurate and convincing presentation of such evidence in court will be hampered or even impossible. The present paper describes the principles and methods of forensic entomology and the optimal techniques for collecting insect evidence.

Keywords

Forensic entomology Post-mortem interval DNA-analysis Entomotoxicology Myiasis Collection of entomological evidence 

References

  1. 1.
    Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR. Best practice in forensic entomology–standards and guidelines. Int J Legal Med. 2007;121:90–104.PubMedCrossRefGoogle Scholar
  2. 2.
    Catts EP. Problems in estimating the post-mortem interval in death investigations. J Agric Entomol. 1992;9:245–55.Google Scholar
  3. 3.
    Campobasso CP, Introna F. The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int. 2001;120:132–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Campobasso CP, Di Vella G, Introna F. Factors affecting decomposition and Diptera colonization. Forensic Sci Int. 2001;120:18–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Bourel B, Callet B, Hedouni V, Gosset D. Flies eggs: a new method for the estimation of short-term post-mortem interval? Forensic Sci Int. 2003;135:27–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Richards CS, Crous KL, Villet MH. Models of development for blowfly sister species Chrysomya chloropyga and Chrysomya putoria. Med Vet Entomol. 2009;23:56–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Zumpt F. Myiasis in man and animals in the old world. London: Butterworths; 1965. pp. xv + 267.Google Scholar
  8. 8.
    Smith KGV. A manual of forensic entomology. London: The Trustees, British Museum; 1986. p. 1–205.Google Scholar
  9. 9.
    Szpila K. Keys for the identification of third instars of European blowflies (Diptera: Calliphoridae) of forensically importance. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 109–37.Google Scholar
  10. 10.
    Archer MS. The effect of time after body discovery on the accuracy of retrospective weather station ambient temperature corrections in forensic entomology. J Forensic Sci. 2004;49:1–7.CrossRefGoogle Scholar
  11. 11.
    Grassberger M, Reiter C. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci Int. 2001;120:32–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Reiter C. Zum Wachstumsverhalten der Maden der blauen Schmeißfliege Calliphora vicina. Z Rechtsmed. 1984;91:295–308.PubMedCrossRefGoogle Scholar
  13. 13.
    Higley LG, Haskel NH. Insect development and forensic entomology. In: Byrd JH, Castner JL, editors. Forensic entomology—the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 389–405.Google Scholar
  14. 14.
    Villet MH, Richards CS, Midgley JM. Contemporary precision, bias and accuracy of minimum post-mortem intervals estimated using development of carrion-feeding insects. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 109–37.Google Scholar
  15. 15.
    Richards CS, Paterson ID, Villet MH. Estimating the age of immature Chrysomya albiceps (Diptera: Calliphoridae), correcting for temperature and geographical latitude. Int J Legal Med. 2008;122:271–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Donovan SE, Hall MJR, Turner BD, Moncrieff CB. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med Vet Entomol. 2006;20:106–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Adams ZJO, Hall MJR. Methods used for the killing and preservation of blowfly larvae, and their effect on post-mortem larval length. Forensic Sci Int. 2003;138:50–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Greenberg B, Kunich JC. Entomology and the law: flies as forensic indicators. Cambridge: Cambridge University Press; 2002. p. 1–306.Google Scholar
  19. 19.
    de Réaumur RAF. Day-degree methods for pest management. Environ Entomol. 1735;12:613–9.Google Scholar
  20. 20.
    Higley LG, Pedigo LP, Ostlie KR. Degday: a program for calculating degree-days, and assumptions behind the degree-day approach. Environ Entomol. 1986;15:999–1016.Google Scholar
  21. 21.
    Ikemoto T, Takai K. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ Entomol. 2000;29:671–82.CrossRefGoogle Scholar
  22. 22.
    Megnin JP. La faune des cadavres Encyclopedie Scientifique des Aide-Memoire. Paris: Masson, Gauthier-Villars et Fils; 1894. p. 1–224.Google Scholar
  23. 23.
    Anderson GS. Factors that influence insect succession on carrion. In: Byrd JH, Castner JL, editors. Forensic entomology: the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 201–50.Google Scholar
  24. 24.
    Gaudry E. The insects colonisation of buried remains. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 273–312.Google Scholar
  25. 25.
    Campobasso CP, Disney RHL, Introna F. A case of Megaselia scalaris (Loew) (Dipt., Phoridae) breeding in a human corpse. Aggrawal’s Internet J Forensic Med Tox. 2004;5:3–5.Google Scholar
  26. 26.
    VanLaerhoven SL. Ecological theory and its application in forensic entomology. In: Byrd JH, Castner JL, editors. Forensic entomology–the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 493–518.Google Scholar
  27. 27.
    Voss SC, Spafford H, Dadour IR. Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia. Forensic Sci Int. 2009;193:26–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Matuszewski S, Bajerlein D, Konwerski S, Szpila K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 1: pattern and rate of decomposition. Forensic Sci Int. 2010;194:85–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Matuszewski S, Bajerlein D, Konwerski S, Szpila K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: composition and residency patterns of carrion fauna. Forensic Sci Int. 2010;195:42–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Hall MJR, Smith KGV. Diptera causing myiasis in man. In: Lane RP, Crosskey RW, editors. Medical insects and arachnids. London: Chapman and Hall; 1993. p. 429.Google Scholar
  31. 31.
    Hall MJR, Wall R. Myiasis of humans and domestic animals. Adv Parasit. 1995;35:257–334.CrossRefGoogle Scholar
  32. 32.
    Hira PR, Assad R, Oshaka G, et al. Myiasis in Kuwait: nosocomial infections caused by Lucilia and Megaselia species. Am J Trop Med Hyg. 2004;70:386–9.PubMedGoogle Scholar
  33. 33.
    Huntington TE, Voigt DW, Higley LG. Not the usual suspects: human wound myiasis by Phorids. J Med Entomol. 2008;45:157–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson GS, Huitson NR. Myiasis in pet animals in British Columbia: the potential of forensic entomology for determining duration of possible neglect. Can Vet J. 2004;45:993–8.PubMedGoogle Scholar
  35. 35.
    Hall MJR, Farkas R. Traumatic myiasis of humans and animals. In: Papp L, Darvas B, editors. Contributions to a manual of palaearctic Diptera. Budapest: Science Herald; 2000. p. 751–68.Google Scholar
  36. 36.
    Sherman RA. Wound myiasis in urban and suburban United States. Arch Intern Med. 2000;160:2004–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Fotedar R, Banerjee U, Verma AK. Human cutaneous myiasis due to mixed infestation in a drug addict. Ann Trop Med Parasit. 1991;85:339–40.PubMedGoogle Scholar
  38. 38.
    Smith DR, Clevenger RR. Nosocomial nasal myiasis. Arch Pathol Lab Med. 1986;110:439–40.PubMedGoogle Scholar
  39. 39.
    Mielke U. Review of nosocomial myiasis. J Hosp Infect. 1997;37:1–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen JCM, Lee JSW, Dai DLK, Woo J. Unusual cases of human myiasis due to old world screwworm fly acquired indoors in Hong Kong. Trans R Soc Trop Med Hyg. 2005;99:914–8.CrossRefGoogle Scholar
  41. 41.
    Chemonges-Nielsen S. Chrysomya bezziana in pet dogs in Hong Kong: a potential threat to Australia. Aust Vet J. 2003;81:202–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Simmers L. Diversified health occupations. 2nd ed. Canada: Delmar; 1988. p. 150–1.Google Scholar
  43. 43.
    Greenberg B. Two cases of human myiasis caused by Phaenicia sericata (Diptera: Calliphoridae) in Chicago area hospitals. J Med Entomol. 1984;21:615.PubMedGoogle Scholar
  44. 44.
    Beyer JC, Enos WF, Stajic M. Drug identification through analysis of maggots. J Forensic Sci. 1980;25:411–2.PubMedGoogle Scholar
  45. 45.
    Kintz P, Godelar A, Tracqui A, Mangin P, Lugnier AA, Chaumont AJ. Fly larvae: a new toxicological method of investigation in forensic medicine. J Forensic Sci. 1990;35:204–7.PubMedGoogle Scholar
  46. 46.
    Gagliano-Candela R, Aventaggiato L. The detection of toxic substances in entomological specimens. Int J Legal Med. 2001;114:197–203.PubMedCrossRefGoogle Scholar
  47. 47.
    Nolte KB, Pinder RD, Lord WD. Insect larvae used to detect cocaine poisoning in a decomposed body. J Forensic Sci. 1992;37:1179–85.PubMedGoogle Scholar
  48. 48.
    Introna F, Campobasso CP, Goff ML. Entomotoxicology. Forensic Sci Int. 2001;120:42–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Carvalho LML. Toxicology and forensic entomology. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 163–78.Google Scholar
  50. 50.
    Pien K, Laloup M, Pipeleers-Marichal M, et al. Toxicological data and growth characteristics of single post-feeding larvae and puparia of Calliphora vicina (Diptera: Calliphoridae) obtained from a controlled nordiazepam study. Int J Leg Med. 2004;118:190–3.CrossRefGoogle Scholar
  51. 51.
    Miller ML, Lord WD, Goff ML, Donnelly B, McDonough ET, Alexis JC. Isolation of amitrptyline and nortriptyline from fly puparia (Phoridae) and beetle exuviae (Dermestidae) associated with mummified human remains. J Forensic Sci. 1994;39:1305–13.Google Scholar
  52. 52.
    Levine B, Golle M, Smialek JE. An unusual drug death involving maggots. Am J Forensic Med Pathol. 2000;21:59–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Williams KR, Pounder D. Site-to-site variability of drug concentrations in skeletal muscle. Am J Forensic Med Pathol. 1997;18:246–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Bourel B, Fleurisse L, Hédouin V, Cailliez JC, Creusy C, Gosset D, Goff ML. Immunohistochemical contribution to the study of morphine metabolism in Calliphoridae larvae and implications in forensic entomotoxicology. J Forensic Sci. 2001;46:596–9.PubMedGoogle Scholar
  55. 55.
    Alves JR, Thyssen GP, Giorgio S, Mello MMF, Linhares AX. Detection of cocaine in Chrysomya albiceps (Diptera: Calliphoridae) larvae reared from a human corpse: report of a forensic entomology case in southeastern Brazil. Ann Entomol Soc Am—ESA, 55th ESA annual meeting, Denver (USA), 6–12 Dec 2007.Google Scholar
  56. 56.
    Introna F, Lo Dico C, Caplan YH, Smialek JE. Opiate analysis of cadaveric blow fly larvae as an indicator of narcotic intoxication. J Forensic Sci. 1990;35:118–22.PubMedGoogle Scholar
  57. 57.
    Campobasso CP, Gherardi M, Caligara M, Sironi L, Introna F. Drug analysis in blowfly larvae and in human tissues: a comparative study. Int J Leg Med. 2004;118:210–4.CrossRefGoogle Scholar
  58. 58.
    Sadler DW, Fuke C, Court F, Pounder DJ. Drug accumulation and elimination in Calliphora vicina larvae. Forensic Sci Int. 1995;71:191–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Hédouin V, Bourel B, Martin-Bouyer L, Bécart A, Tournel G, Deveaux M, Gosset D. Determination of drug levels in larvae of Lucilia sericata (Diptera: Calliphoridae) reared on rabbit carcasses containing morphine. J Forensic Sci. 1999;44:351–3.PubMedGoogle Scholar
  60. 60.
    Kaneshrajah G, Turner B. Calliphora vicina larvae at different rates on different body tissues. Int J Leg Med. 2004;118:242–4.CrossRefGoogle Scholar
  61. 61.
    Gunatilake K, Goff ML. Detection of organophosphate poisoning in a putrefying body by analyzing arthropod larvae. J Forensic Sci. 1989;34:714–6.PubMedGoogle Scholar
  62. 62.
    Fremdt H, Kauert G, Zehner R, Pogoda W, Kettner M, Pape A, Amendt J. Influence of rohypnol® and ethanol on succession and development of necrophagous insects. In: Proceedings 6th EAFE meeting, Crete (Greece) 2008.Google Scholar
  63. 63.
    Amendt J, Zehner R, Johnson DG, Wells JD. Future trends in forensic entomology. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 353–68.CrossRefGoogle Scholar
  64. 64.
    Goff ML, Omori AI, Goodbrod JR. Effect of cocaine in tissues on the rate of development of Boettcherisca peregrina (Diptera: Sarcophagidae). J Med Entomol. 1989;26:91–3.PubMedGoogle Scholar
  65. 65.
    Goff ML, Brown WA, Hewadikaram KA, Omori AI. Effects of heroin in decomposing tissues on the development rate of Boettcherisca peregrina (Diptera: Sarcophagidae) and implications of this effect on estimation of post-mortem intervals using arthropod development patterns. J Forensic Sci. 1991;36:537–42.PubMedGoogle Scholar
  66. 66.
    Bourel B, Hédouin V, Martin-Bouyer L, Becart A, Tournel G, Deveaux M, Gosset D. Effects of morphine in decomposing bodies on the development of Lucilia sericata (Diptera: Calliphoridae). J Forensic Sci. 1999;44:354–8.PubMedGoogle Scholar
  67. 67.
    O’Brien C, Turner B. Impact of paracetamol on Calliphora vicina larval development. Int J Leg Med. 2004;118:188–9.CrossRefGoogle Scholar
  68. 68.
    Zehner R, Amendt J, Schütt S, Sauer S, Krettek R, Povolný D. Genetic identification of forensically important flesh flies (Diptera : Sarcophagidae). Int J Leg Med. 2004;118:245–7.CrossRefGoogle Scholar
  69. 69.
    Wells JD, Stevens JR. Application of DNA-based methods in forensic entomology. Annu Rev Entomol. 2008;53:103–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Mazzanti M, Alessandrini F, Tagliabracci A, Wells J, Campobasso C. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology. Forensic Sci Int. 2010;195:99–102.PubMedCrossRefGoogle Scholar
  71. 71.
    Wells JD, Wall R, Stevens JR. Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase I sequence: a cautionary tale for forensic species determination. Int J Leg Med. 2007;121:229–33.CrossRefGoogle Scholar
  72. 72.
    Nelson LA, Wallman JF, Dowton M. Identification of forensically important Chrysomya (Diptera: Calliphoridae) species using the second ribosomal internal transcribed spacer (ITS2). Forensic Sci Int. 2008;177:238–47.PubMedCrossRefGoogle Scholar
  73. 73.
    Stevens JR, Wall R, Wells JD. Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species. Insect Mol Biol. 2002;11:141–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Tourle R, Downie DA, Villet MH. Flies in the ointment: a morphological and molecular comparison of Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae) in South Africa. Med Vet Entomol. 2009;23:6–14.PubMedCrossRefGoogle Scholar
  75. 75.
    Whitworth TL, Dawson RD, Magalon H, Baudry E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc R Soc B. 2007;274:1731–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Campobasso CP, Linville JG, Wells JD, Introna F. Forensic genetic analysis of insect gut contents. Am J Forensic Med Pathol. 2005;26:161–5.PubMedGoogle Scholar
  77. 77.
    Wells JD, Introna F, Di Vella G, Campobasso CP, Hayes J, Sperling FA. Human and insect mitochondrial DNA analysis from maggots. J Forensic Sci. 2001;46:685–7.PubMedGoogle Scholar
  78. 78.
    Zehner R, Amendt J, Krettek R. STR typing of human DNA from fly larvae fed on decomposing bodies. J Forensic Sci. 2004;49:337–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Carvalho F, Dadour IR, Groth DM, Harvey ML. Isolation and detection of ingested DNA from the immature stages of Calliphora dubia (Diptera: Calliphoridae) A forensically important blowfly. Forensic Sci Med Pathol. 2005;1:261–5.CrossRefGoogle Scholar
  80. 80.
    Tarone AM, Kimberley C, Jennings MS, Foran DR. Aging blow fly eggs using gene expression: a feasibility study. J Forensic Sci. 2007;52:1350–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Zehner R, Amendt J. Boehme P: gene expression analysis as a tool for age estimation of blowfly pupae. For Sci Int Genet Suppl. 2009;2:292–3.CrossRefGoogle Scholar
  82. 82.
    Byrd JH, Lord WD, Wallace JR, Tomberlin JK. Collection of entomological evidence during death investigations. In: Byrd JH, Castner JL, editors. Forensic entomology: the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 127–76.Google Scholar
  83. 83.
    Midgley JM, Villet MH. Effect of the killing method on post-mortem change in length of larvae of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) stored in 70% ethanol. Int J Leg Med. 2009;123:285–92.CrossRefGoogle Scholar
  84. 84.
    Goff LM, Campobasso CP, Gherardi M. Forensic implications of myiasis. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 313–25.Google Scholar
  85. 85.
    Benecke M, Josephi E, Zweihoff R. Neglect of the elderly: forensic entomology cases and considerations. Forensic Sci Int. 2004;46:195–9.CrossRefGoogle Scholar
  86. 86.
    Campobasso CP, Marchetti D, Introna F, Colonna MF. Post-mortem artifacts made by ants and the effect of ant activity on decompositional rates. Am J Forensic Med Pathol. 2009;30:84–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Hwang CC, Turner BD. Small-scaled geographical variation in life-history traits of the blowfly Calliphora vicina between rural and urban populations. Entomol Exp Appl. 2009;132:218–24.CrossRefGoogle Scholar
  88. 88.
    Gallagher MB, Sandhu S, Kimsey R. Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J Forensic Sci. 2010;55:438–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Greenberg B. Flies as forensic indicators. J Med Entomol. 1991;28:565–77.PubMedGoogle Scholar
  90. 90.
    Drijhouft FP. Cuticular hydrocarbons: a new tool in forensic entomology? In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 179–203.Google Scholar
  91. 91.
    Midgley JM, Richards CS, Villet MH. The utility of Coleoptera in forensic investigations. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 57–68.Google Scholar
  92. 92.
    Perotti MA, Braig HR, Goff ML. Phoretic mites and carcasses: Acari transported by organisms associated with animal and human decomposition. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 179–203.Google Scholar
  93. 93.
    Tarone AM, Foran DR. Components of developmental plasticity in a Michigan population of Lucilia sericata (Diptera: Calliphoridae). J Forensic Sci. 2008;53:942–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Ieno EN, Amendt J, Fremdt H, Saveliev AA, Zuur AF. Analysing forensic entomology data using additive mixed effects modelling. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 139–62.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Amendt
    • 1
  • C. S. Richards
    • 2
  • C. P. Campobasso
    • 3
  • R. Zehner
    • 1
  • M. J. R. Hall
    • 2
  1. 1.Institute of Forensic MedicineFrankfurt am MainGermany
  2. 2.Natural History MuseumLondonUK
  3. 3.Department of Health Sciences (SpeS)University of MoliseCampobassoItaly

Personalised recommendations