Forensic Science, Medicine, and Pathology

, Volume 7, Issue 2, pp 162–184 | Cite as

Review: Pharmacogenetic aspects of the effect of cytochrome P450 polymorphisms on serotonergic drug metabolism, response, interactions, and adverse effects

  • J. L. Pilgrim
  • D. Gerostamoulos
  • Olaf H. Drummer


The field of pharmacogenetics contains a wealth of potential for the enhancement of clinical practice by providing a more effective match between patient and drug, consequently reducing the probability of an adverse drug reaction. Although a relatively novel concept in the forensic context, pharmacogenetics has the capability to assist in the interpretation of drug related deaths, particularly in unintentional drug poisonings where the cause of death remains unclear. However, the complex pharmacology of the drugs when subjected to genetic variations in metabolism makes interpretation of the expected response and adverse events difficult. Many possess multiple metabolic pathways, narrow therapeutic indices and active metabolites or enantiomers which may be eliminated via different pathways to the parent drug. A number of these drugs, which are metabolised primarily by the CYP450 system, are also associated with serotonin syndrome, or serotonin toxicity, especially when used concomitantly with other serotonin active drugs which rely on the same metabolic pathways for drug elimination. A comprehensive understanding of polymorphic drug metabolism and its expected outcomes is therefore essential when interpreting the involvement of drugs in adverse reactions. This review examines the genetically variable CYP450-mediated metabolism of a number of serotonin-active drugs that are often implicated in cases of serotonin toxicity, to assess the impact of pharmacogenetics on drug metabolism, response, interactions and adverse effects.


Pharmacogenetics CYP450 enzymes Metabolism Serotonin toxicity Drug interactions 


  1. 1.
    Runciman WB, Roughead EE, Semple SJ, Adams RJ. Adverse drug events and medication errors in Australia. Int J Qual Health Care. 2003;15(Suppl 1):i49–59.PubMedGoogle Scholar
  2. 2.
    Lazarou J, Pomeranz B, Corey P. Incidence of adverse drug reactions in hospitalised patients: a meta-analysis of prospective studies. JAMA. 1998;279:1200–5.PubMedGoogle Scholar
  3. 3.
    Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329:15–9.PubMedGoogle Scholar
  4. 4.
    Druzgala P. A fresh approach to adverse drug reactions. Eur Pharm Rev Drug Saf. 2004:85–8.Google Scholar
  5. 5.
    Evans WE, McLeod HL. Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538–49.PubMedGoogle Scholar
  6. 6.
    Garcia-Quetglas E, Azanza JR, Sadaba B, Munoz MJ, Gil I, Campanero MA. Pharmacokinetics of tramadol enantiomers and their respective phase i metabolites in relation to cyp2d6 phenotype. Pharmacol Res. 2007;55(2):122–30.PubMedGoogle Scholar
  7. 7.
    Kollek R, van Aken J, Feuerstein G, Schmedders M. Pharmacogenetics, adverse drug reactions and public health. Community Genet. 2006;9(1):50–4.PubMedGoogle Scholar
  8. 8.
    McKinnon RA, Evans AM. Cytochrome p450. 3. Clinically significant drug interactions. Aust J Hosp Pharm. 2000;30(4):146–9.Google Scholar
  9. 9.
    McKinnon RA. Cytochrome p450. 1. Multiplicity and function. Aust J Hosp Pharm. 2000;30:54–6.Google Scholar
  10. 10.
    McKinnon RAE. A.M. Cytochrome p450. 2. Pharmacogenetics. Aust J Hosp Pharm. 2000;30:102–5.Google Scholar
  11. 11.
    Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348(6):529–37.PubMedGoogle Scholar
  12. 12.
    Brosen K. The relationship between imipramine metabolism and the sparteine oxidation polymorphism (thesis). Dan Med Bull. 1988;35:460–8.PubMedGoogle Scholar
  13. 13.
    Rutter JL. Symbiotic relationship of pharmacogenetics and drugs of abuse. AAPS J. 2006;8(1):E174–84.PubMedGoogle Scholar
  14. 14.
    Shuster L. Pharmacogenetics of drugs of abuse. Ann N Y Acad Sci. 1989;562:56–73.PubMedGoogle Scholar
  15. 15.
    Wolf CR, Smith G. Pharmacogenetics. Br Med Bull. 1999;55(2):366–86.PubMedGoogle Scholar
  16. 16.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome p450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116(3):496–526.PubMedGoogle Scholar
  17. 17.
    Shelling AN, Ferguson LR. Genetic variation in human disease and a new role for copy number variants. Mutat Res. 2007;622(1–2):33–41.PubMedGoogle Scholar
  18. 18.
    Wong SH. Pharmacogenomics and variation in drug therapy report 2005. 2005.Google Scholar
  19. 19.
    Koski A. Interpretation of postmortem toxicology results: pharmacogenetics and drug-alcohol interaction. PhD Thesis. Helsinki, Finland: University of Helsinki; 2005.Google Scholar
  20. 20.
    Danielson PB. The cytochrome p450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.PubMedGoogle Scholar
  21. 21.
    Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58(3):521–90.PubMedGoogle Scholar
  22. 22.
    Paar WD, Frankus P, Dengler HJ. The metabolism of tramadol by human liver microsomes. Clin Investig. 1992;70(8):708–10.PubMedGoogle Scholar
  23. 23.
    Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome p450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.PubMedGoogle Scholar
  24. 24.
    Ray WA, Griffin MR, Shorr RI. Adverse drug reactions and the elderly. Health Aff (Millwood). 1990;9(3):114–22.Google Scholar
  25. 25.
    Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet. 2000;356(9242):1667–71.PubMedGoogle Scholar
  26. 26.
    Shi R, Winecker RE, Lo SF, Schneider RJ, Kin M, Schur BC, et al. Pharmacogenomics for clinical and forensic toxicology—an adjunct for interpretation of drug toxicity. Pharmacogenomics and proteomics: enabling the practice of personalized medicine. Tertiary pharmacogenomics for clinical and forensic toxicology—an adjunct for interpretation of drug toxicity. Washington DC, USA: AACC Press; 2006.Google Scholar
  27. 27.
    Guengerich FP. Cytochrome p450s and other enzymes in drug metabolism and toxicity. AAPS J. 2006;8(1):E101–11.PubMedGoogle Scholar
  28. 28.
    Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase i and ii drug metabolizing enzymes. Curr Drug Metab. 2002;3(5):481–90.PubMedGoogle Scholar
  29. 29.
    Sweeney BP. Pharmacogenomics: the genetic basis for variability in drug response. Cambridge University Press: Recent advances in anaesthesia and intensive care; 2005.Google Scholar
  30. 30.
    Wester K, Jonsson AK, Spigset O, Druid H, Hagg S. Incidence of fatal adverse drug reactions: a population based study. Br J Clin Pharmacol. 2008;65(4):573–9.PubMedGoogle Scholar
  31. 31.
    Kaneda Y, Kawamura I, Fujii A, Ohmori T. Serotonin syndrome—‘potential’ role of the cyp2d6 genetic polymorphism in asians. Int J Neuropsychopharmacol. 2002;5(1):105–6.PubMedGoogle Scholar
  32. 32.
    Blanco JG, Harrison PL, Evans WE, Relling MV. Human cytochrome p450 maximal activities in pediatric versus adult liver. Drug Metab Dispos. 2000;28(4):379–82.PubMedGoogle Scholar
  33. 33.
    Anzenbacher P, Anzenbacherova E. Cytochromes p450 and metabolism of xenobiotics. Cell Mol Life Sci. 2001;58(5–6):737–47.PubMedGoogle Scholar
  34. 34.
    Daly AK. Pharmacogenetics of the cytochromes p450. Curr Top Med Chem. 2004;4(16):1733–44.PubMedGoogle Scholar
  35. 35.
    Daly AK, Cholerton S, Gregory W, Idle JR. Metabolic polymorphisms. Pharmacol Ther. 1993;57(2–3):129–60.PubMedGoogle Scholar
  36. 36.
    Faber MS, Jetter A, Fuhr U. Assessment of cyp1a2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97(3):125–34.PubMedGoogle Scholar
  37. 37.
    Druid H, Holmgren P, Carlsson B, Ahlner J. Cytochrome p450 2d6 (cyp2d6) genotyping on postmortem blood as a supplementary tool for interpretation of forensic toxicological results. Forensic Sci Int. 1999;99(1):25–34.PubMedGoogle Scholar
  38. 38.
    Cascorbi I. Pharmacogenetics of cytochrome p4502d6: genetic background and clinical implication. Eur J Clin Invest. 2003;33(Suppl 2):17–22.PubMedGoogle Scholar
  39. 39.
    Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A. Molecular genetics of cyp2d6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol. 2002;53(2):111–22.PubMedGoogle Scholar
  40. 40.
    Stipp D. A DNA tragedy. Fortune. 2000;142(10):170–4, 8, 80 passim.Google Scholar
  41. 41.
    Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, et al. Genetic polymorphisms of drug-metabolizing enzymes cyp2d6, cyp2c9, cyp2c19 and cyp3a5 in the Greek population. Fundam Clin Pharmacol. 2007;21(4):419–26.PubMedGoogle Scholar
  42. 42.
    Ma JD, Nafziger AN, Bertino JSJ. Genetic polymorphisms of cytochrome p450 enzymes and the effect on interindividual, pharmacokinetic variability in extensive metabolizers. J Clin Pharmacol. 2004;44(5):447–56.PubMedGoogle Scholar
  43. 43.
    Miners JO, Birkett DJ. Cytochrome p4502c9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998;45(6):525–38.PubMedGoogle Scholar
  44. 44.
    Liu ZQ, Cheng ZN, Huang SL, Chen XP, Ou-Yang DS, Jiang CH, et al. Effect of the cyp2c19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol. 2001;52(1):96–9.PubMedGoogle Scholar
  45. 45.
    Wang JH, Liu ZQ, Wang W, Chen XP, Shu Y, He N, et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of cyp2c19. Clin Pharmacol Ther. 2001;70(1):42–7.PubMedGoogle Scholar
  46. 46.
    Yu BN, Chen GL, He N, Ouyang DS, Chen XP, Liu ZQ, et al. Pharmacokinetics of citalopram in relation to genetic polymorphism of cyp2c19. Drug Metab Dispos. 2003;31(10):1255–9.PubMedGoogle Scholar
  47. 47.
    Bramness JG, Skurtveit S, Gulliksen M, Breilid H, Steen VM, Morland J. The cyp2c19 genotype and the use of oral contraceptives influence the pharmacokinetics of carisoprodol in healthy human subjects. Eur J Clin Pharmacol. 2005;61(7):499–506.PubMedGoogle Scholar
  48. 48.
    Keshava C, McCanlies EC, Weston A. Cyp3a4 polymorphisms—potential risk factors for breast and prostate cancer: a huge review. Am J Epidemiol. 2004;160(9):825–41.PubMedGoogle Scholar
  49. 49.
    Burk O, Wojnowski L. Cytochrome p450 3a and their regulation. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):105–24.PubMedGoogle Scholar
  50. 50.
    Bailey DG, Malcolm J, Arnold O, Spence JD. Grapefruit juice-drug interactions. Br J Clin Pharmacol. 1998;46(2):101–10.PubMedGoogle Scholar
  51. 51.
    van Schaik RH, de Wildt SN, Brosens R, van Fessem M, van den Anker JN, Lindemans J. The cyp3a4*3 allele: is it really rare? Clin Chem. 2001;47(6):1104–6.PubMedGoogle Scholar
  52. 52.
    Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human cyp3a-mediated metabolism. Adv Drug Deliv Rev. 2002;54(10):1271–94.PubMedGoogle Scholar
  53. 53.
    Zanger UM, Raimundo S, Eichelbaum M. Cytochrome p450 2d6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.PubMedGoogle Scholar
  54. 54.
    Flockhart DA, Rae JM. Cytochrome p450 3a pharmacogenetics: the road that needs traveled. Pharmacogenomics J. 2003;3(1):3–5.PubMedGoogle Scholar
  55. 55.
    Bernard SA, Bruera E. Drug interactions in palliative care. J Clin Oncol. 2000;18(8):1780–99.PubMedGoogle Scholar
  56. 56.
    Weschules DJ, Bain KT, Richeimer S. Actual and potential drug interactions associated with methadone. Pain Med. 2008;9(3):315–44.PubMedGoogle Scholar
  57. 57.
    Armstrong SC, Cozza KL, Sandson NB. Six patterns of drug–drug interactions. Psychosomatics. 2003;44(3):255–8.PubMedGoogle Scholar
  58. 58.
    Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome p450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997;44(2):190–4.PubMedGoogle Scholar
  59. 59.
    Spina E, Scordo MG, D’Arrigo C. Metabolic drug interactions with new psychotropic agents. Fundam Clin Pharmacol. 2003;17(5):517–38.PubMedGoogle Scholar
  60. 60.
    Ring BJ, Eckstein JA, Gillespie JS, Binkley SN, VandenBranden M, Wrighton SA. Identification of the human cytochromes p450 responsible for in vitro formation of r- and s-norfluoxetine. J Pharmacol Exp Ther. 2001;297(3):1044–50.PubMedGoogle Scholar
  61. 61.
    Drummer OH, Odell M. The forensic pharmacology of drugs of abuse. London: Arnold; 2001.Google Scholar
  62. 62.
    Shapiro RE, Tepper SJ. The serotonin syndrome, triptans, and the potential for drug-drug interactions. Headache. 2007;47(2):266–9.PubMedGoogle Scholar
  63. 63.
    Ener RA, Meglathery SB, Van Decker WA, Gallagher RM. Serotonin syndrome and other serotonergic disorders. Pain Med. 2003;4(1):63–74.PubMedGoogle Scholar
  64. 64.
    Suchowersky O, deVries JD. Interaction of fluoxetine and selegiline. Can J Psychiatry. 1990;35(6):571–2.PubMedGoogle Scholar
  65. 65.
    Lane R, Baldwin D. Selective serotonin reuptake inhibitor-induced serotonin syndrome: review. J Clin Psychopharmacol. 1997;17(3):208–21.PubMedGoogle Scholar
  66. 66.
    Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med. 2005;352(11):1112–20.PubMedGoogle Scholar
  67. 67.
    Dunkley EJ, Isbister GK, Sibbritt D, Dawson AH, Whyte IM. The hunter serotonin toxicity criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM. 2003;96(9):635–42.PubMedGoogle Scholar
  68. 68.
    Drummer OH. Postmortem toxicology of drugs of abuse. Forensic Sci Int. 2004;142(2–3):101–13.PubMedGoogle Scholar
  69. 69.
    Silins E, Copeland J, Dillon P. Qualitative review of serotonin syndrome, ecstasy (mdma) and the use of other serotonergic substances: hierarchy of risk. Aust N Z J Psychiatry. 2007;41:649–55.PubMedGoogle Scholar
  70. 70.
    Copeland J, Dillon P, Gascoigne M. Ecstasy and the concomitant use of pharmaceuticals. Addict Behav. 2006;31(2):367–70. doi: 10.1016/j.addbeh.2005.05.025.PubMedGoogle Scholar
  71. 71.
    Kam PC, Chang GW. Selective serotonin reuptake inhibitors. Pharmacology and clinical implications in anaesthesia and critical care medicine. Anaesthesia. 1997;52(10):982–8.PubMedGoogle Scholar
  72. 72.
    Vaswani M, Linda FK, Ramesh S. Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(1):85–102.PubMedGoogle Scholar
  73. 73.
    Mandrioli R, Forti GC, Raggi MA. Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450. Curr Drug Metab. 2006;7(2):127–33.PubMedGoogle Scholar
  74. 74.
    Hiemke C, Hartter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther. 2000;85(1):11–28.PubMedGoogle Scholar
  75. 75.
    Rahola JG. Antidepressants: pharmacological profile and clinical consequences. Int J Psyc Clin Pract. 2001;5(1):19–28.Google Scholar
  76. 76.
    Bezchlibnyk-Butler K, Aleksic I, Kennedy SH. Citalopram—a review of pharmacological and clinical effects. J Psychiatry Neurosci. 2000;25(3):241–54.PubMedGoogle Scholar
  77. 77.
    Llorca PM, Brousse G, Schwan R. Escitalopram for treatment of major depressive disorder in adults. Encephale. 2005;31(4 Pt 1):490–501.PubMedGoogle Scholar
  78. 78.
    Baumann P, Rochat B. Comparative pharmacokinetics of selective serotonin reuptake inhibitors: a look behind the mirror. Int Clin Psychopharmacol. 1995;10(Suppl 1):15–21.PubMedGoogle Scholar
  79. 79.
    Baker GB, Prior TI. Stereochemistry and drug efficacy and development: relevance of chirality to antidepressant and antipsychotic drugs. Ann Med. 2002;34(7–8):537–43.PubMedGoogle Scholar
  80. 80.
    Carlsson B. From achiral to chiral analysis of citalopram. Sweden: Linkoping University; 2003.Google Scholar
  81. 81.
    Kugelberg FC, Jones AW. Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Int. 2007;165(1):10–29.PubMedGoogle Scholar
  82. 82.
    Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (mdma, “ecstasy”). Pharmacol Rev. 2003;55(3):463–508.PubMedGoogle Scholar
  83. 83.
    Carrasco JL, Sandner C. Clinical effects of pharmacological variations in selective serotonin reuptake inhibitors: an overview. Int J Clin Pract. 2005;59(12):1428–34.PubMedGoogle Scholar
  84. 84.
    Gillman PK. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth. 2005;95(4):434–41.PubMedGoogle Scholar
  85. 85.
    Harvey AT, Burke M. Comment on: the serotonin syndrome associated with paroxetine, an over-the-counter cold remedy, and vascular disease. Am J Emerg Med. 1995;13(5):605–7.PubMedGoogle Scholar
  86. 86.
    Skop BP, Finkelstein JA, Mareth TR, Magoon MR, Brown TM. The serotonin syndrome associated with paroxetine, an over-the-counter cold remedy, and vascular disease. Am J Emerg Med. 1994;12(6):642–4.PubMedGoogle Scholar
  87. 87.
    Westenberg HG, Sandner C. Tolerability and safety of fluvoxamine and other antidepressants. Int J Clin Pract. 2006;60(4):482–91. doi: 10.1111/j.1368-5031.2006.00865.x.PubMedGoogle Scholar
  88. 88.
    Miura M, Ohkubo T. Identification of human cytochrome p450 enzymes involved in the major metabolic pathway of fluvoxamine. Xenobiotica. 2007;37(2):169–79.PubMedGoogle Scholar
  89. 89.
    Burke WJ, Kratochvil CJ. Stereoisomers in psychiatry: the case of escitalopram. Prim Care Companion J Clin Psychiatry. 2002;4(1):20–4.PubMedGoogle Scholar
  90. 90.
    Droll K, Bruce-Mensah K, Otton SV, Gaedigk A, Sellers EM, Tyndale RF. Comparison of three cyp2d6 probe substrates and genotype in ghanaians, chinese and caucasians. Pharmacogenetics. 1998;8(4):325–33.PubMedGoogle Scholar
  91. 91.
    Mayersohn M, Guentert TW. Clinical pharmacokinetics of the monoamine oxidase-a inhibitor moclobemide. Clin Pharmacokinet. 1995;29(5):292–332.PubMedGoogle Scholar
  92. 92.
    Giroud C, Horisberger B, Eap C, Augsburger M, Menetrey A, Baumann P, et al. Death following acute poisoning by moclobemide. Forensic Sci Int. 2004;140(1):101–7. doi: 10.1016/j.forsciint.2003.10.021.PubMedGoogle Scholar
  93. 93.
    Yamada M, Yasuhara H. Clinical pharmacology of Mao inhibitors: safety and future. Neurotoxicology. 2004;25(1–2):215–21.PubMedGoogle Scholar
  94. 94.
    Chan BS, Graudins A, Whyte IM, Dawson AH, Braitberg G, Duggin GG. Serotonin syndrome resulting from drug interactions. Med J Aust. 1998;169(10):523–5.PubMedGoogle Scholar
  95. 95.
    Azzaro AJ, Ziemniak J, Kemper E, Campbell BJ, VanDenBerg C. Selegiline transdermal system: an examination of the potential for cyp450-dependent pharmacokinetic interactions with 3 psychotropic medications. J Clin Pharmacol. 2007;47(2):146–58.PubMedGoogle Scholar
  96. 96.
    Taavitsainen P, Anttila M, Nyman L, Karnani H, Salonen JS, Pelkonen O. Selegiline metabolism and cytochrome p450 enzymes: in vitro study in human liver microsomes. Pharmacol Toxicol. 2000;86(5):215–21.PubMedGoogle Scholar
  97. 97.
    Yasar S, Goldberg JP, Goldberg SR. Are metabolites of l-deprenyl (selegiline) useful or harmful? Indications from preclinical research. J Neural Transm Suppl. 1996;48:61–73.PubMedGoogle Scholar
  98. 98.
    Shin HS. Metabolism of selegiline in humans. Identification, excretion, and stereochemistry of urine metabolites. Drug Metab Dispos. 1997;25(6):657–62.PubMedGoogle Scholar
  99. 99.
    Hasegawa M, Matsubara K, Fukushima S, Maseda C, Uezono T, Kimura K. Stereoselective analyses of selegiline metabolites: possible urinary markers for selegiline therapy. Forensic Sci Int. 1999;101(2):95–106.PubMedGoogle Scholar
  100. 100.
    Toyama SC, Iacono RP. Is it safe to combine a selective serotonin reuptake inhibitor with selegiline? Ann Pharmacother. 1994;28(3):405–6.PubMedGoogle Scholar
  101. 101.
    Rogers JF, Nafziger AN, Bertino JSJ. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome p450-metabolized drugs. Am J Med. 2002;113(9):746–50.PubMedGoogle Scholar
  102. 102.
    Gillman K. Venlafaxine-lithium toxicity: suitability for use in the elderly. J Clin Pharm Ther. 2007;32(5):529–31.PubMedGoogle Scholar
  103. 103.
    Baker GB, Prior TI, Coutts RT. Chirality and drugs used to treat psychiatric disorders. J Psychiatry Neurosci. 2002;27(6):401–3.PubMedGoogle Scholar
  104. 104.
    Maguire KP, Burrows GD, Norman TR, Scoggins BA. Metabolism and pharmacokinetics of dothiepin. Br J Clin Pharmacol. 1981;12(3):405–9.PubMedGoogle Scholar
  105. 105.
    Williams DA, Foye WO, Lemke TL. Foye’s principles of medicinal chemistry. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002.Google Scholar
  106. 106.
    Keller T, Schneider A, Tutsch-Bauer E. Fatal intoxication due to dothiepin. Forensic Sci Int. 2000;109(2):159–66.PubMedGoogle Scholar
  107. 107.
    Heal D, Cheetham S, Martin K, Browning J, Luscombe G, Buckett R. Comparitive pharmacology of dothiepin, its metabolites, and other antidepressant drugs. Drug Dev Res. 1992;27:121–35.Google Scholar
  108. 108.
    Lancaster SG, Gonzalez JP. Dothiepin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs. 1989;38(1):123–47.PubMedGoogle Scholar
  109. 109.
    Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151(6):737–48.PubMedGoogle Scholar
  110. 110.
    Hartter S, Tybring G, Friedberg T, Weigmann H, Hiemke C. The n-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic cyp2c19. Pharm Res. 2002;19(7):1034–7.PubMedGoogle Scholar
  111. 111.
    Yan JH, Hubbard JW, McKay G, Midha KK. Stereoselective in vivo and in vitro studies on the metabolism of doxepin and n-desmethyldoxepin. Xenobiotica. 1997;27(12):1245–57.PubMedGoogle Scholar
  112. 112.
    Haritos VS, Ghabrial H, Ahokas JT, Ching MS. Role of cytochrome p450 2d6 (cyp2d6) in the stereospecific metabolism of e- and z-doxepin. Pharmacogenetics. 2000;10(7):591–603.PubMedGoogle Scholar
  113. 113.
    Gutierrez MA, Stimmel GL, Aiso JY. Venlafaxine: a 2003 update. Clin Ther. 2003;25(8):2138–54.PubMedGoogle Scholar
  114. 114.
    McAlpine DE, O’Kane DJ, Black JL, Mrazek DA. Cytochrome p450 2d6 genotype variation and venlafaxine dosage. Mayo Clin Proc. 2007;82(9):1065–8.PubMedGoogle Scholar
  115. 115.
    Eap CB, Lessard E, Baumann P, Brawand-Amey M, Yessine MA, O’Hara G, et al. Role of cyp2d6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics. 2003;13(1):39–47.PubMedGoogle Scholar
  116. 116.
    Tatsumi M, Groshan K, Blakely RD, Richelson E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997;340(2–3):249–58.PubMedGoogle Scholar
  117. 117.
    Davis R, Whittington R, Bryson HM. Nefazodone: a review of its pharmacology and clinical efficacy in the management of major depression. Drugs. 1997;53(4):608–36.PubMedGoogle Scholar
  118. 118.
    Lantz MS, Buchalter E, Giambanco V. St. John’s wort and antidepressant drug interactions in the elderly. J Geriatr Psychiatry Neurol. 1999;12(1):7–10.PubMedGoogle Scholar
  119. 119.
    Rathi SS, Grover, JK, Vats, V. Nefazodone—a new anti-depressant. JIOM. 2000;22(1&2).Google Scholar
  120. 120.
    Marino MR, Langenbacher M, Ulderman HD. Interaction of nefazodone and fluoxetine. Clin Pharmacol Ther. 1996;59:180.Google Scholar
  121. 121.
    Rotzinger S, Fang J, Baker GB. Trazodone is metabolized to m-chlorophenylpiperazine by cyp3a4 from human sources. Drug Metab Dispos. 1998;26(6):572–5.PubMedGoogle Scholar
  122. 122.
    Yasui N, Otani K, Kaneko S, Ohkubo T, Osanai T, Ishida M, et al. Inhibition of trazodone metabolism by thioridazine in humans. Ther Drug Monit. 1995;17(4):333–5.PubMedGoogle Scholar
  123. 123.
    Smith KL-H, F. Association of desyrel (trazodone) with drug interactions with medications that alter cyp3a4 metabolism. Canada 2004.Google Scholar
  124. 124.
    Ernst E, Rand JI, Barnes J, Stevinson C. Adverse effects profile of the herbal antidepressant st. John’s wort (hypericum perforatum l.). Eur J Clin Pharmacol. 1998;54(8):589–94.PubMedGoogle Scholar
  125. 125.
    Dannawi M. Possible serotonin syndrome after combination of buspirone and St John’s Wort. J Psychopharmacol. 2002;16(4):401.PubMedGoogle Scholar
  126. 126.
    Fugh-Berman A. Herb-drug interactions. Lancet. 2000;355(9198):134–8.PubMedGoogle Scholar
  127. 127.
    Kalant H. The pharmacology and toxicology of “ecstasy” (mdma) and related drugs. CMAJ. 2001;165(7):917–28.PubMedGoogle Scholar
  128. 128.
    Shannon M. Methylenedioxymethamphetamine (mdma, “ecstasy”). Pediatr Emerg Care. 2000;16(5):377–80.PubMedGoogle Scholar
  129. 129.
    Albertson TE, Derlet RW, Van Hoozen BE. Methamphetamine and the expanding complications of amphetamines. West J Med. 1999;170(4):214–9.PubMedGoogle Scholar
  130. 130.
    Musshoff F. Illegal or legitimate use? Precursor compounds to amphetamine and methamphetamine. Drug Metab Rev. 2000;32(1):15–44.PubMedGoogle Scholar
  131. 131.
    Ramamoorthy Y, Yu AM, Suh N, Haining RL, Tyndale RF, Sellers EM. Reduced (±)-3,4-methylenedioxymethamphetamine (“ecstasy”) metabolism with cytochrome p450 2d6 inhibitors and pharmacogenetic variants in vitro. Biochem Pharmacol. 2002;63(12):2111–9.PubMedGoogle Scholar
  132. 132.
    de la Torre R, Farre M, Ortuno J, Mas M, Brenneisen R, Roset PN, et al. Non-linear pharmacokinetics of mdma (‘ecstasy’) in humans. Br J Clin Pharmacol. 2000;49(2):104–9.PubMedGoogle Scholar
  133. 133.
    Pizarro N, Farre M, Pujadas M, Peiro AM, Roset PN, Joglar J, et al. Stereochemical analysis of 3,4-methylenedioxymethamphetamine and its main metabolites in human samples including the catechol-type metabolite (3,4-dihydroxymethamphetamine). Drug Metab Dispos. 2004;32(9):1001–7.PubMedGoogle Scholar
  134. 134.
    Fallon JK, Kicman AT, Henry JA, Milligan PJ, Cowan DA, Hutt AJ. Stereospecific analysis and enantiomeric disposition of 3,4-methylenedioxymethamphetamine (ecstasy) in humans. Clin Chem. 1999;45(7):1058–69.PubMedGoogle Scholar
  135. 135.
    Oesterheld JR, Armstrong SC, Cozza KL. Ecstasy: pharmacodynamic and pharmacokinetic interactions. Psychosomatics. 2004;45(1):84–7.PubMedGoogle Scholar
  136. 136.
    Dowling GP, McDonough ET III, Bost RO. ‘Eve’ and ‘ecstasy’ A. report of five deaths associated with the use of mdea and mdma. JAMA. 1987;257(12):1615–7.PubMedGoogle Scholar
  137. 137.
    Henry JA, Jeffreys KJ, Dawling S. Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet. 1992;340(8816):384–7.PubMedGoogle Scholar
  138. 138.
    Dostalek M, Jurica J, Pistovcakova J, Hanesova M, Tomandl J, Linhart I, et al. Effect of methamphetamine on cytochrome p450 activity. Xenobiotica. 2007;37(12):1355–66.PubMedGoogle Scholar
  139. 139.
    Peters FT, Samyn N, Wahl M, Kraemer T, De Boeck G, Maurer HH. Concentrations and ratios of amphetamine, methamphetamine, mda, mdma, and mdea enantiomers determined in plasma samples from clinical toxicology and driving under the influence of drugs cases by gc-nici-ms. J Anal Toxicol. 2003;27(8):552–9.PubMedGoogle Scholar
  140. 140.
    Chahl LA. Opioids—mechanism of action. Aust Prescr. 1996;19:63–5.Google Scholar
  141. 141.
    Matthiesen T, Wohrmann T, Coogan TP, Uragg H. The experimental toxicology of tramadol: an overview. Toxicol Lett. 1998;95(1):63–71.PubMedGoogle Scholar
  142. 142.
    Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879–923.PubMedGoogle Scholar
  143. 143.
    Lotsch J. Opioid metabolites. J Pain Symptom Manage. 2005;29(5 Suppl):S10–24.PubMedGoogle Scholar
  144. 144.
    Lewis KS, Han NH. Tramadol: a new centrally acting analgesic. Am J Health Syst Pharm. 1997;54(6):643–52.PubMedGoogle Scholar
  145. 145.
    Shipton EA. Tramadol—present and future. Anaesth Intensive Care. 2000;28(4):363–74.PubMedGoogle Scholar
  146. 146.
    Tirkkonen T, Laine K. Drug interactions with the potential to prevent prodrug activation as a common source of irrational prescribing in hospital inpatients. Clin Pharmacol Ther. 2004;76(6):639–47.PubMedGoogle Scholar
  147. 147.
    Mehvar R, Elliott K, Parasrampuria R, Eradiri O. Stereospecific high-performance liquid chromatographic analysis of tramadol and its o-demethylated (m1) and n, o-demethylated (m5) metabolites in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;852(1–2):152–9.PubMedGoogle Scholar
  148. 148.
    Laugesen S, Enggaard TP, Pedersen RS, Sindrup SH, Brosen K. Paroxetine, a cytochrome p450 2d6 inhibitor, diminishes the stereoselective o-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther. 2005;77(4):312–23.PubMedGoogle Scholar
  149. 149.
    Levo A, Koski A, Ojanpera I, Vuori E, Sajantila A. Post-mortem snp analysis of cyp2d6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int. 2003;135(1):9–15.PubMedGoogle Scholar
  150. 150.
    Pedersen RS, Damkier P, Brosen K. Tramadol as a new probe for cytochrome p450 2d6 phenotyping: a population study. Clin Pharmacol Ther. 2005;77(6):458–67.PubMedGoogle Scholar
  151. 151.
    Michalalkas JR, Colvill JD, Coller JK, James H, Farquharson AL, Lopatko OV, Somogyi AA, White JM, editors. Comparison of tramadol metabolism in methadone and buprenorphine maintenance patients. SEAWP-RMP, ASCEPT, HBPRCA; 2007 Dec 2–6, 2007; Adelaide, Australia.Google Scholar
  152. 152.
    Mather LE, Cousins MJ. Pharmacology of opioids. Part 2. Clinical aspects. Med J Aust. 1986;144(9):475–81.PubMedGoogle Scholar
  153. 153.
    Begre S, von Bardeleben U, Ladewig D, Jaquet-Rochat S, Cosendai-Savary L, Golay KP, et al. Paroxetine increases steady-state concentrations of (r)-methadone in cyp2d6 extensive but not poor metabolizers. J Clin Psychopharmacol. 2002;22(2):211–5.PubMedGoogle Scholar
  154. 154.
    Eap CB, Bertschy G, Powell K, Baumann P. Fluvoxamine and fluoxetine do not interact in the same way with the metabolism of the enantiomers of methadone. J Clin Psychopharmacol. 1997;17(2):113–7.PubMedGoogle Scholar
  155. 155.
    Koski A, Sistonen J, Ojanpera I, Gergov M, Vuori E, Sajantila A. Cyp2d6 and cyp2c19 genotypes and amitriptyline metabolite ratios in a series of medicolegal autopsies. Forensic Sci Int. 2006;158(2–3):177–83.PubMedGoogle Scholar
  156. 156.
    Chevalier D, Cauffiez C, Allorge D, Lo-Guidice JM, Lhermitte M, Lafitte JJ, et al. Five novel natural allelic variants-951a>c, 1042g>a (d348n), 1156a>t (i386f), 1217g>a (c406y) and 1291c>t (c431y)-of the human cyp1a2 gene in a french caucasian population. Hum Mutat. 2001;17(4):355–6.Google Scholar
  157. 157.
    Zhou H, Josephy PD, Kim D, Guengerich FP. Functional characterization of four allelic variants of human cytochrome p450 1a2. Arch Biochem Biophys. 2004;422(1):23–30.PubMedGoogle Scholar
  158. 158.
    Bijl D. The serotonin syndrome. Neth J Med. 2004;62:309–14.PubMedGoogle Scholar
  159. 159.
    Musshoff F, Madea B. Fatality due to ingestion of tramadol alone. Forensic Sci Int. 2001;116(2–3):197–9.PubMedGoogle Scholar
  160. 160.
    Cassens S, Nickel EA, Quintel M, Neumann P. The serotonin syndrome fatal course of intoxication with citalopram and moclobemide. Anaesthesist. 2006;55(11):1189–96.PubMedGoogle Scholar
  161. 161.
    Dams R, Benijts TH, Lambert WE, Van Bocxlaer JF, Van Varenbergh D, Van Peteghem C, et al. A fatal case of serotonin syndrome after combined moclobemide-citalopram intoxication. J Anal Toxicol. 2001;25(2):147–51.PubMedGoogle Scholar
  162. 162.
    Isbister GK, McGettigan P, Dawson A. A fatal case of moclobemide-citalopram intoxication. J Anal Toxicol. 2001;25(8):716–7.PubMedGoogle Scholar
  163. 163.
    Neuvonen PJ, Pohjola-Sintonen S, Tacke U, Vuori E. Five fatal cases of serotonin syndrome after moclobemide-citalopram or moclobemide-clomipramine overdoses. Lancet. 1993;342(8884):1419.PubMedGoogle Scholar
  164. 164.
    Beasley CMJ, Masica DN, Heiligenstein JH, Wheadon DE, Zerbe RL. Possible monoamine oxidase inhibitor-serotonin uptake inhibitor interaction: fluoxetine clinical data and preclinical findings. J Clin Psychopharmacol. 1993;13(5):312–20.PubMedGoogle Scholar
  165. 165.
    Feighner JP, Boyer WF, Tyler DL, Neborsky RJ. Adverse consequences of fluoxetine-maoi combination therapy. J Clin Psychiatry. 1990;51(6):222–5.PubMedGoogle Scholar
  166. 166.
    Jermain DM, Hughes PL, Follender AB. Potential fluoxetine-selegiline interaction. Ann Pharmacother. 1992;26(10):1300.PubMedGoogle Scholar
  167. 167.
    Bilbao Garay J, Mesa Plaza N, Castilla Castellano V, Dhimes Tejada P. Serotonin syndrome: report of a fatal case and review of the literature. Rev Clin Esp. 2002;202(4):209–11.PubMedGoogle Scholar
  168. 168.
    Joffe RT, Bakish D. Combined ssri-moclobemide treatment of psychiatric illness. J Clin Psychiatry. 1994;55(1):24–5.PubMedGoogle Scholar
  169. 169.
    Freezer A, Salem A, Irvine RJ. Effects of 3,4-methylenedioxymethamphetamine (mdma, ‘ecstasy’) and para-methoxyamphetamine on striatal 5-ht when co-administered with moclobemide. Brain Res. 2005;1041(1):48–55.PubMedGoogle Scholar
  170. 170.
    Pilgrim JL, Gerostamoulos D, Drummer OH, Bollmann M. Involvement of amphetamines in sudden and unexpected death. J Forensic Sci. 2009;54(2):478–85.PubMedGoogle Scholar
  171. 171.
    Vuori E, Henry JA, Ojanpera I, Nieminen R, Savolainen T, Wahlsten P, et al. Death following ingestion of mdma (ecstasy) and moclobemide. Addiction. 2003;98(3):365–8.PubMedGoogle Scholar
  172. 172.
    Prior FH, Isbister GK, Dawson AH, Whyte IM. Serotonin toxicity with therapeutic doses of dexamphetamine and venlafaxine. Med J Aust. 2002;176(5):240–1.PubMedGoogle Scholar
  173. 173.
    Muly EC, McDonald W, Steffens D, Book S. Serotonin syndrome produced by a combination of fluoxetine and lithium. Am J Psychiatry. 1993;150(10):1565.PubMedGoogle Scholar
  174. 174.
    Noveske FG, Hahn KR, Flynn RJ. Possible toxicity of combined fluoxetine and lithium. Am J Psychiatry. 1989;146(11):1515.PubMedGoogle Scholar
  175. 175.
    Salama AA, Shafey M. A case of severe lithium toxicity induced by combined fluoxetine and lithium carbonate. Am J Psychiatry. 1989;146(2):278.PubMedGoogle Scholar
  176. 176.
    Evans M, Marwick P. Fluvoxamine and lithium: an unusual interaction. Br J Psychiatry. 1990;156:286.PubMedGoogle Scholar
  177. 177.
    Ohman R, Spigset O. Serotonin syndrome induced by fluvoxamine-lithium interaction. Pharmacopsychiatry. 1993;26(6):263–4.PubMedGoogle Scholar
  178. 178.
    Spina E, Pollicino AM, Avenoso A, Campo GM, Perucca E, Caputi AP. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit. 1993;15(3):243–6.PubMedGoogle Scholar
  179. 179.
    Hartter S, Arand M, Oesch F, Hiemke C. Non-competitive inhibition of clomipramine n-demethylation by fluvoxamine. Psychopharmacology (Berl). 1995;117(2):149–53.Google Scholar
  180. 180.
    Jalil P. Toxic reaction following the combined administration of fluoxetine and phenytoin: two case reports. J Neurol Neurosurg Psychiatry. 1992;55(5):412–3.PubMedGoogle Scholar
  181. 181.
    Schmider J, Greenblatt DJ, von Moltke LL, Harmatz JS, Shader RI. N-demethylation of amitriptyline in vitro: role of cytochrome p-450 3a (cyp3a) isoforms and effect of metabolic inhibitors. J Pharmacol Exp Ther. 1995;275(2):592–7.PubMedGoogle Scholar
  182. 182.
    Bertschy G, Vandel S, Vandel B, Allers G, Volmat R. Fluvoxamine-tricyclic antidepressant interaction. An accidental finding. Eur J Clin Pharmacol. 1991;40(1):119–20.PubMedGoogle Scholar
  183. 183.
    Dursun SM, Mathew VM, Reveley MA. Toxic serotonin syndrome after fluoxetine plus carbamazepine. Lancet. 1993;342(8868):442–3.PubMedGoogle Scholar
  184. 184.
    Martinelli V, Bocchetta A, Palmas AM, Del Zompo M. An interaction between carbamazepine and fluvoxamine. Br J Clin Pharmacol. 1993;36(6):615–6.PubMedGoogle Scholar
  185. 185.
    Kesavan S, Sobala GM. Serotonin syndrome with fluoxetine plus tramadol. J R Soc Med. 1999;92(9):474–5.PubMedGoogle Scholar
  186. 186.
    Mason BJ, Blackburn KH. Possible serotonin syndrome associated with tramadol and sertraline coadministration. Ann Pharmacother. 1997;31(2):175–7.PubMedGoogle Scholar
  187. 187.
    Mahlberg R, Kunz D, Sasse J, Kirchheiner J. Serotonin syndrome with tramadol and citalopram. Am J Psychiatry. 2004;161(6):1129.PubMedGoogle Scholar
  188. 188.
    Egberts AC, ter Borgh J, Brodie-Meijer CC. Serotonin syndrome attributed to tramadol addition to paroxetine therapy. Int Clin Psychopharmacol. 1997;12(3):181–2.PubMedGoogle Scholar
  189. 189.
    Gnanadesigan N, Espinoza RT, Smith R, Israel M, Reuben DB. Interaction of serotonergic antidepressants and opioid analgesics: is serotonin syndrome going undetected? J Am Med Dir Assoc. 2005;6(4):265–9.PubMedGoogle Scholar
  190. 190.
    Karunatilake H, Buckley NA. Serotonin syndrome induced by fluvoxamine and oxycodone. Ann Pharmacother. 2006;40(1):155–7.PubMedGoogle Scholar
  191. 191.
    Houlihan DJ. Serotonin syndrome resulting from coadministration of tramadol, venlafaxine, and mirtazapine. Ann Pharmacother. 2004;38(3):411–3.PubMedGoogle Scholar
  192. 192.
    Ripple MG, Pestaner JP, Levine BS, Smialek JE. Lethal combination of tramadol and multiple drugs affecting serotonin. Am J Forensic Med Pathol. 2000;21(4):370–4.PubMedGoogle Scholar
  193. 193.
    Bush E, Miller C, Friedman I. A case of serotonin syndrome and mutism associated with methadone. J Palliat Med. 2006;9(6):1257–9.PubMedGoogle Scholar
  194. 194.
    Iribarne C, Dreano Y, Bardou LG, Menez JF, Berthou F. Interaction of methadone with substrates of human hepatic cytochrome p450 3a4. Toxicology. 1997;117(1):13–23.PubMedGoogle Scholar
  195. 195.
    Hamilton SP, Nunes EV, Janal M, Weber L. The effect of sertraline on methadone plasma levels in methadone-maintenance patients. Am J Addict. 2000;9(1):63–9.PubMedGoogle Scholar
  196. 196.
    Reeves RR, Bullen JA. Serotonin syndrome produced by paroxetine and low-dose trazodone. Psychosomatics. 1995;36(2):159–60.PubMedGoogle Scholar
  197. 197.
    McCue RE, Joseph M. Venlafaxine- and trazodone-induced serotonin syndrome. Am J Psychiatry. 2001;158(12):2088–9.PubMedGoogle Scholar
  198. 198.
    Fisher AA, Davis MW. Serotonin syndrome caused by selective serotonin reuptake-inhibitors-metoclopramide interaction. Ann Pharmacother. 2002;36(1):67–71.PubMedGoogle Scholar
  199. 199.
    Munhoz RP. Serotonin syndrome induced by a combination of bupropion and ssris. Clin Neuropharmacol. 2004;27(5):219–22.PubMedGoogle Scholar
  200. 200.
    Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol. 1994;46(1):35–9.PubMedGoogle Scholar
  201. 201.
    Steiner W, Fontaine R. Toxic reaction following the combined administration of fluoxetine and l-tryptophan: five case reports. Biol Psychiatry. 1986;21(11):1067–71.PubMedGoogle Scholar
  202. 202.
    Clark DB, Andrus MR, Byrd DC. Drug interactions between linezolid and selective serotonin reuptake inhibitors: case report involving sertraline and review of the literature. Pharmacotherapy. 2006;26(2):269–76.PubMedGoogle Scholar
  203. 203.
    Erjavec MK, Coda BA, Nguyen Q, Donaldson G, Risler L, Shen DD. Morphine-fluoxetine interactions in healthy volunteers: analgesia and side effects. J Clin Pharmacol. 2000;40(11):1286–95.PubMedGoogle Scholar
  204. 204.
    Kung SWN. M. H. Serotonin syndrome with tramadol and dextromethorphan. Hong Kong J Emerg Med. 2007;14(1):48–52.Google Scholar
  205. 205.
    Gillman PK. Possible serotonin syndrome with moclobemide and pethidine. Med J Aust. 1995;162(10):554.PubMedGoogle Scholar
  206. 206.
    Starr C. Interaction between pethidine and selegiline. Lancet. 1991;337(8740):554.PubMedGoogle Scholar
  207. 207.
    Zornberg GL, Bodkin JA, Cohen BM. Severe adverse interaction between pethidine and selegiline. Lancet. 1991;337(8735):246.PubMedGoogle Scholar
  208. 208.
    Emims [database on the Internet] 1996–2010. Available from: Accessed: 2009–2010.
  209. 209.
    Welzen M, Uges DA. Tiaft reference blood level list of therapeutic and toxic substances [document online]: Www.Tiaft.Org. 2004.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. L. Pilgrim
    • 1
  • D. Gerostamoulos
    • 1
  • Olaf H. Drummer
    • 1
  1. 1.Department of Forensic MedicineMonash University, Victorian Institute of Forensic MedicineSouthbankAustralia

Personalised recommendations