Forensic Science, Medicine, and Pathology

, Volume 7, Issue 1, pp 26–36

Gene variants predisposing to SIDS: current knowledge



Genetic risk factors play a role in sudden unexpected infant death; either as a cause of death, such as in cases with medium-chain acyl-coenzyme A dehydrogenase deficiency and cardiac arrest due to long QT syndrome, or as predisposing factors for sudden infant death syndrome (SIDS). Most likely genetic predisposition to SIDS represent a polygenic inheritance pattern leading to sudden death when combined with other risk factors, such as a vulnerable developmental stage of the central nervous system and/or the immune system, in addition to environmental risk factors, such as a common cold or prone sleeping position. Genes involved in the regulation of the immune system, cardiac function, the serotonergic network and brain function and development have so far emerged as the most important with respect to SIDS. The purpose of the present paper is to survey current knowledge on SIDS and possible genetic contributions.


Sudden infant death SIDS Genetics Serotonin 


  1. 1.
    Rognum TO, Saugstad OD. Biochemical and immunological studies in SIDS victims. Clues to understanding the death mechanism. Acta Paediatr Suppl. 1993;82(Suppl 389):82–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate. 1994;65:194–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang DW, Desai RR, Crotti L, Arnestad M, Insolia R, Pedrazzini M, et al. Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation. 2007;115:368–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Schoendorf KC, Kiely JL. Relationship of sudden infant death syndrome to maternal smoking during and after pregnancy. Pediatrics. 1992;90:905–8.PubMedGoogle Scholar
  5. 5.
    Markestad T, Skadberg B, Hordvik E, Morild I, Irgens LM. Sleeping position and sudden infant death syndrome (SIDS): effect of an intervention programme to avoid prone sleeping. Acta Paediatr. 1995;84:375–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Arnestad M, Andersen M, Vege A, Rognum TO. Changes in the epidemiological pattern of sudden infant death syndrome in southeast Norway, 1984–1998: implications for future prevention and research. Arch Dis Child. 2001;85:108–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Blair PS, Sidebotham P, Berry PJ, Evans M, Fleming PJ. Major epidemiological changes in sudden infant death syndrome: a 20-year population-based study in the UK. Lancet. 2006;367:314–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Stoltenberg L, Saugstad OD, Rognum TO. Sudden infant death syndrome victims show local immunoglobulin M response in tracheal wall and immunoglobulin A response in duodenal mucosa. Pediatr Res. 1992;31:372–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Thrane PS, Rognum TO, Brandtzaeg P. Up-regulated epithelial expression of HLA-DR and secretory component in salivary glands: reflection of mucosal immunostimulation in sudden infant death syndrome. Pediatr Res. 1994;35:625–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Vege A, Rognum TO. Sudden infant death syndrome, infection and inflammatory responses. FEMS Immunol Med Microbiol. 2004;42:3–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Vege A, Rognum TO, Scott H, Aasen AO, Saugstad OD. SIDS cases have increased levels of interleukin-6 in cerebrospinal fluid. Acta Paediatr. 1995;84:193–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Guntheroth WG. Interleukin-1 as intermediary causing prolonged sleep apnea and SIDS during respiratory infections. Med Hypotheses. 1989;28:121–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Vege A, Rognum TO, Anestad G. IL-6 cerebrospinal fluid levels are related to laryngeal IgA and epithelial HLA-DR response in sudden infant death syndrome. Pediatr Res. 1999;45:803–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Rognum IJ, Haynes RL, Vege A, Yang M, Rognum TO, Kinney HC. Interleukin-6 and the serotonergic system of the medulla oblongata in the sudden infant death syndrome. Acta Neuropathol. 2009;118:519–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, et al. Brainstem serotonergic deficiency in sudden infant death syndrome. JAMA. 2010;303:430–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Mossner R, Daniel S, Schmitt A, Albert D, Lesch KP. Modulation of serotonin transporter function by interleukin-4. Life Sci. 2001;68:873–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Schneider PM, Wendler C, Riepert T, Braun L, Schacker U, Horn M, et al. Possible association of sudden infant death with partial complement C4 deficiency revealed by post-mortem DNA typing of HLA class II and III genes. Eur J Pediatr. 1989;149:170–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Opdal SH, Vege A, Stave AK, Rognum TO. The complement component C4 in sudden infant death. Eur J Pediatr. 1999;158:210–2.PubMedCrossRefGoogle Scholar
  19. 19.
    Figueroa JE, Densen P. Infectious diseases associated with complement deficiencies. Clin Microbiol Rev. 1991;4:359–95.PubMedGoogle Scholar
  20. 20.
    Isenman DE, Young JR. Covalent binding properties of the C4A and C4B isotypes of the fourth component of human complement on several C1-bearing cell surfaces. J Immunol. 1986;136:2542–50.PubMedGoogle Scholar
  21. 21.
    Stray-Pedersen A, Vege A, Opdal SH, Moberg S, Rognum TO. Surfactant protein A and D gene polymorphisms and protein expression in victims of sudden infant death. Acta Paediatr. 2009;98:62–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Summers AM, Summers CW, Drucker DB, Hajeer AH, Barson A, Hutchinson IV. Association of IL-10 genotype with sudden infant death syndrome. Hum Immunol. 2000;61:1270–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Opdal SH, Opstad A, Vege A, Rognum TO. IL-10 gene polymorphisms are associated with infectious cause of sudden infant death. Hum Immunol. 2003;64:1183–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Moscovis SM, Gordon AE, Hall ST, Gleeson M, Scott RJ, Roberts-Thomsom J, et al. Interleukin 1-beta responses to bacterial toxins and sudden infant death syndrome. FEMS Immunol Med Microbiol. 2004;42:139–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Korachi M, Pravica V, Barson AJ, Hutchinson IV, Drucker DB. Interleukin 10 genotype as a risk factor for sudden infant death syndrome: determination of IL-10 genotype from wax-embedded postmortem samples. FEMS Immunol Med Microbiol. 2004;42:125–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Moscovis SM, Gordon AE, Al Madani OM, Gleeson M, Scott RJ, Roberts-Thomson J, et al. Interleukin-10 and sudden infant death syndrome. FEMS Immunol Med Microbiol. 2004;42:130–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Dashash M, Pravica V, Hutchinson IV, Barson AJ, Drucker DB. Association of sudden infant death syndrome with VEGF and IL-6 gene polymorphisms. Hum Immunol. 2006;67:627–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Moscovis SM, Gordon AE, Al Madani OM, Gleeson M, Scott RJ, Roberts-Thomson J, et al. IL6 G-174C associated with sudden infant death syndrome in a Caucasian Australian cohort. Hum Immunol. 2006;67:819–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Opdal SH, Rognum TO. The IL6–174G/C polymorphism and sudden infant death syndrome. Hum Immunol. 2007;68:541–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Ferrante L, Opdal SH, Vege A, Rognum TO. TNF-alpha promoter polymorphisms in sudden infant death. Hum Immunol. 2008;69:368–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Perskvist N, Skoglund K, Edston E, Backstrom G, Lodestad I, Palm U. TNF-alpha and IL-10 gene polymorphisms versus cardioimmunological responses in sudden infant death. Fetal Pediatr Pathol. 2008;27:149–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Highet AR, Berry AM, Goldwater PN. Distribution of interleukin-1 receptor antagonist genotypes in sudden unexpected death in infancy (SUDI); unexplained SUDI have a higher frequency of allele 2. Ann Med. 2010;42:64–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Ferrante L, Opdal SH, Vege A, Rognum TO. IL-1 gene cluster polymorphisms and sudden infant death syndrome. Hum Immunol. 2010;71:402–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Ferrante L, Opdal SH, Vege A, Rognum TO. Cytokine gene polymorphisms and sudden infant death syndrome. Acta Paediatr 2010; (in press).Google Scholar
  35. 35.
    Reuss E, Fimmers R, Kruger A, Becker C, Rittner C, Hohler T. Differential regulation of interleukin-10 production by genetic and environmental factors–a twin study. Genes Immun. 2002;3:407–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Witkin SS, Gerber S, Ledger WJ. Influence of interleukin-1 receptor antagonist gene polymorphism on disease. Clin Infect Dis. 2002;34:204–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Rivera-Chavez FA, Peters-Hybki DL, Barber RC, O’Keefe GE. Interleukin-6 promoter haplotypes and interleukin-6 cytokine responses. Shock. 2003;20:218–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Hohjoh H, Tokunaga K. Allele-specific binding of the ubiquitous transcription factor OCT-1 to the functional single nucleotide polymorphism (SNP) sites in the tumor necrosis factor-alpha gene (TNFA) promoter. Genes Immun. 2001;2:105–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Virchow S, Ansorge N, Rosskopf D, Rubben H, Siffert W. The G protein beta3 subunit splice variant Gbeta3-s causes enhanced chemotaxis of human neutrophils in response to interleukin-8. Naunyn Schmiedebergs Arch Pharmacol. 1999;360:27–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Rosskopf D, Koch K, Habich C, Geerdes J, Ludwig A, Wilhelms S, et al. Interaction of Gbeta3 s, a splice variant of the G-protein Gbeta3, with Ggamma- and Galpha-proteins. Cell Signal. 2003;15:479–88.PubMedCrossRefGoogle Scholar
  41. 41.
    Opdal SH, Melien O, Rootwelt H, Vege A, Arnestad M, Rognum T. The G protein beta3 subunit 825C allele is associated with sudden infant death due to infection. Acta Paediatr. 2006;95:1129–32.CrossRefGoogle Scholar
  42. 42.
    Schwartz PJ, Priori SG, Bloise R, Napolitano C, Ronchetti E, Piccinini A, et al. Molecular diagnosis in a child with sudden infant death syndrome. Lancet. 2001;358:1342–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Piippo K, Swan H, Pasternack M, Chapman H, Paavonen K, Viitasalo M, et al. A founder mutation of the potassium channel KCNQ1 in long QT syndrome: implications for estimation of disease prevalence and molecular diagnostics. J Am Coll Cardiol. 2001;37:562–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Wedekind H, Smits JP, Schulze-Bahr E, Arnold R, Veldkamp MW, Bajanowski T, et al. De novo mutation in the SCN5A gene associated with early onset of sudden infant death. Circulation. 2001;104:1158–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Bajanowski T, Rossi L, Biondo B, Ortmann C, Haverkamp W, Wedekind H, et al. Prolonged QT interval and sudden infant death–report of two cases. Forensic Sci Int. 2001;115:147–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Christiansen M, Tonder N, Larsen LA, Andersen PS, Simonsen H, Oyen N, et al. Mutations in the HERG K+-ion channel: a novel link between long QT syndrome and sudden infant death syndrome. Am J Cardiol. 2005;95:433–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Arnestad M, Vege A, Rognum TO, Isaksen CV. Sudden infant death syndrome not caused by Norwegian Jervell and Lange-Nielsen mutations. Am J Med Genet A. 2005;134:459–60.PubMedGoogle Scholar
  49. 49.
    Plant LD, Bowers PN, Liu Q, Morgan T, Zhang T, State MW, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest. 2006;116:430–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Wedekind H, Bajanowski T, Friederich P, Breithardt G, Wulfing T, Siebrands C, et al. Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int J Legal Med. 2006;120:129–37.PubMedCrossRefGoogle Scholar
  51. 51.
    Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115:361–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Van Norstrand DW, Tester DJ, Ackerman MJ. Overrepresentation of the proarrhythmic, sudden death predisposing sodium channel polymorphism S1103Y in a population-based cohort of African-American sudden infant death syndrome. Heart Rhythm. 2008;5:712–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Turillazzi E, La Rocca G, Anzalone R, Corrao S, Neri M, Pomara C, et al. Heterozygous nonsense SCN5A mutation W822X explains a simultaneous sudden infant death syndrome. Virchows Arch. 2008;453:209–16.PubMedCrossRefGoogle Scholar
  54. 54.
    Millat G, Kugener B, Chevalier P, Chahine M, Huang H, Malicier D, et al. Contribution of long-QT syndrome genetic variants in sudden infant death syndrome. Pediatr Cardiol. 2009;30:502–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Otagiri T, Kijima K, Osawa M, Ishii K, Makita N, Matoba R, et al. Cardiac ion channel gene mutations in sudden infant death syndrome. Pediatr Res. 2008;64:482–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, et al. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm. 2007;4:733–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Van Norstrand DW, Valdivia CR, Tester DJ, Ueda K, London B, Makielski JC, et al. Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation. 2007;116:2253–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4:161–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Aarnoudse AJ, Newton-Cheh C, de Bakker PI, Straus SM, Kors JA, Hofman A, et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation. 2007;116:10–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Osawa M, Kimura R, Hasegawa I, Mukasa N, Satoh F. SNP association and sequence analysis of the NOS1AP gene in SIDS. Leg Med (Tokyo). 2009;11(Suppl 1):S307–8.Google Scholar
  61. 61.
    Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan BH, Ye B, et al. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Circ Arrhythm Electrophysiol. 2009;2:667–76.PubMedCrossRefGoogle Scholar
  62. 62.
    Kinney HC, Richerson GB, Dymecki SM, Darnall RA, Nattie EE. The brainstem and serotonin in the sudden infant death syndrome. Annu Rev Pathol. 2009;4:517–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Paterson DS, Hilaire G, Weese-Mayer DE. Medullary serotonin defects and respiratory dysfunction in sudden infant death syndrome. Respir Physiol Neurobiol. 2009;168:133–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Weese-Mayer DE, Berry-Kravis EM, Maher BS, Silvestri JM, Curran ME, Marazita ML. Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene. Am J Med Genet. 2003;117A:268–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Narita N, Narita M, Takashima S, Nakayama M, Nagai T, Okado N. Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population. Pediatrics. 2001;107:690–2.PubMedCrossRefGoogle Scholar
  66. 66.
    Opdal SH, Vege A, Rognum TO. Serotonin transporter gene variation in sudden infant death syndrome. Acta Paediatr. 2008;97:861–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Nonnis Marzano F, Maldini M, Filonzi L, Lavezzi AM, Parmigiani S, Magnani C, et al. Genes regulating the serotonin metabolic pathway in the brain stem and their role in the etiopathogenesis of the sudden infant death syndrome. Genomics. 2008;91:485–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, et al. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. Jama. 2006;296:2124–32.PubMedCrossRefGoogle Scholar
  69. 69.
    Haas C, Braun J, Bar W, Bartsch C. No association of serotonin transporter gene variation with sudden infant death syndrome (SIDS) in Caucasians. Leg Med (Tokyo). 2009;11(Suppl 1):210–2.Google Scholar
  70. 70.
    Weese-Mayer DE, Zhou L, Berry-Kravis EM, Maher BS, Silvestri JM, Marazita ML. Association of the serotonin transporter gene with sudden infant death syndrome: a haplotype analysis. Am J Med Genet. 2003;122A:238–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L. Sudden infant death syndrome and sudden intrauterine unexplained death: correlation between hypoplasia of raphe nuclei and serotonin transporter gene promoter polymorphism. Pediatr Res. 2009;66:22–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Maher BS, Marazita ML, Rand C, Zhou L, Berry-Kravis EM, Weese-Mayer DE. 3′ UTR polymorphism of the serotonin transporter gene and sudden infant death syndrome: haplotype analysis. Am J Med Genet A. 2006;140:1453–7.PubMedGoogle Scholar
  73. 73.
    Rand CM, Berry-Kravis EM, Fan W, Weese-Mayer DE. HTR2A variation and sudden infant death syndrome: a case-control analysis. Acta Paediatr. 2009;98:58–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Morley ME, Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE. Genetic variation in the HTR1A gene and sudden infant death syndrome. Am J Med Genet A. 2008;146:930–3.PubMedGoogle Scholar
  75. 75.
    Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE. Sudden infant death syndrome: rare mutation in the serotonin system FEV gene. Pediatr Res. 2007;62:180–2.PubMedCrossRefGoogle Scholar
  76. 76.
    Broadbelt KG, Barger MA, Paterson DS, Holm IA, Haas EA, Krous HF, et al. Serotonin-related FEV gene variant in the sudden infant death syndrome is a common polymorphism in the African-American population. Pediatr Res. 2009;66:631–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, et al. Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development. Pediatr Res. 2004;56:391–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Cummings KJ, Klotz C, Liu WQ, Weese-Mayer DE, Marazita ML, Cooper ME, et al. Sudden infant death syndrome (SIDS) in African Americans: polymorphisms in the gene encoding the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP). Acta Paediatr. 2009;98:482–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Kijima K, Sasaki A, Niki T, Umetsu K, Osawa M, Matoba R, et al. Sudden infant death syndrome is not associated with the mutation of PHOX2B gene, a major causative gene of congenital central hypoventilation syndrome. Tohoku J Exp Med. 2004;203:65–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Rand CM, Weese-Mayer DE, Zhou L, Maher BS, Cooper ME, Marazita ML, et al. Sudden infant death syndrome: Case-control frequency differences in paired like homeobox (PHOX) 2B gene. Am J Med Genet A. 2006;140:1687–91.PubMedGoogle Scholar
  81. 81.
    Puffenberger EG, Hu-Lince D, Parod JM, Craig DW, Dobrin SE, Conway AR, et al. Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Proc Natl Acad Sci USA. 2004;101:11689–94.PubMedCrossRefGoogle Scholar
  82. 82.
    Hering R, Frade-Martinez R, Bajanowski T, Poets CF, Tschentscher F, Riess O. Genetic investigation of the TSPYL1 gene in sudden infant death syndrome. Genet Med. 2006;8:55–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Aranda FJ, Teixeira F, Becker LE. Assessment of growth in sudden infant death syndrome. Neuroepidemiology. 1990;9:95–105.PubMedCrossRefGoogle Scholar
  84. 84.
    Kadhim H, Sebire G, Khalifa M, Evrard P, Groswasser J, Franco P, et al. Incongruent cerebral growth in sudden infant death syndrome. J Child Neurol. 2005;20:244–6.PubMedGoogle Scholar
  85. 85.
    Opdal SH, Vege A, Stray-Pedersen A, Rognum TO. Aquaporin-4 gene variation and sudden infant death syndrome. Pediatr Res 2010;68:48–51.Google Scholar
  86. 86.
    Klintschar M, Reichenpfader B, Saternus KS. A functional polymorphism in the tyrosine hydroxylase gene indicates a role of noradrenalinergic signaling in sudden infant death syndrome. J Pediatr. 2008;153:190–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang L, Rao F, Wessel J, Kennedy BP, Rana BK, Taupenot L, et al. Functional allelic heterogeneity and pleiotropy of a repeat polymorphism in tyrosine hydroxylase: prediction of catecholamines and response to stress in twins. Physiol Genomics. 2004;19:277–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Wiemann M, Frede S, Tschentscher F, Kiwull-Schone H, Kiwull P, Bingmann D, et al. NHE3 in the human brainstem: implication for the pathogenesis of the sudden infant death syndrome (SIDS)? Adv Exp Med Biol. 2008;605:508–13.PubMedCrossRefGoogle Scholar
  89. 89.
    Poetsch M, Nottebaum BJ, Wingenfeld L, Frede S, Vennemann M, Bajanowski T. Impact of sodium/proton exchanger 3 gene variants on sudden infant death syndrome. J Pediatr 2010;156:44–8.Google Scholar
  90. 90.
    Miller M, Brooks J, Forbes N, Insel R. Frequency of G-985 mutation in medium chain acyl-coenzyme A dehydrogenase (MCAD) deficiency in sudden infant death syndrome (SIDS). Prog Clin Biol Res. 1992;375:495–8.PubMedGoogle Scholar
  91. 91.
    Arens R, Gozal D, Jain K, Muscati S, Heuser ET, Williams JC, et al. Prevalence of medium-chain acyl-coenzyme A dehydrogenase deficiency in the sudden infant death syndrome. J Pediatr. 1993;122(5 Pt 1):715–8.PubMedGoogle Scholar
  92. 92.
    Lundemose JB, Gregersen N, Kolvraa S, Norgaard Pedersen B, Gregersen M, Helweg-Larsen K, et al. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome. Acta Paediatr. 1993;82:544–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Dundar M, Lanyon WG, Connor JM. Scottish frequency of the common G985 mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene and the role of MCAD deficiency in sudden infant death syndrome (SIDS). J Inherit Metab Dis. 1993;16:991–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Penzien JM, Molz G, Wiesmann UN, Colombo JP, Buhlmann R, Wermuth B. Medium-chain acyl-CoA dehydrogenase deficiency does not correlate with apparent life-threatening events and the sudden infant death syndrome: results from phenylpropionate loading tests and DNA analysis. Eur J Pediatr. 1994;153:352–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Opdal SH, Vege A, Saugstad OD, Rognum TO. Is the medium-chain acyl-CoA dehydrogenase G985 mutation involved in sudden infant death in Norway? Eur J Pediatr. 1994;154:166–7.CrossRefGoogle Scholar
  96. 96.
    Santer R, Gregersen N, Tanaka K, Hinck-Kneip C, Krawinkel M, Schaub J. The prevalence of the G985 allele of medium-chain acyl-CoA dehydrogenase deficiency among sudden infant death victims and healthy newborns in northern Germany. Eur J Pediatr. 1995;154:497.PubMedCrossRefGoogle Scholar
  97. 97.
    Lecoq I, Mallet E, Bonte JB, Travert G. The A985 to G mutation of the medium-chain acyl-CoA dehydrogenase gene and sudden infant death syndrome in Normandy. Acta Paediatr. 1996;85:145–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Boles RG, Buck EA, Blitzer MG, Platt MS, Cowan TM, Martin SK, et al. Retrospective biochemical screening of fatty acid oxidation disorders in postmortem livers of 418 cases of sudden death in the first year of life. J Pediatr. 1998;132:924–33.PubMedCrossRefGoogle Scholar
  99. 99.
    Ryan A, McGill J, Mountain H. Rapid testing for the MCAD G583A mutation, by PCR-mediated site directed mutagenesis, in an Australian population of SIDS patients. Dis Markers. 1997;13:131–4.PubMedGoogle Scholar
  100. 100.
    Korman SH, Gutman A, Brooks R, Sinnathamby T, Gregersen N, Andresen BS. Homozygosity for a severe novel medium-chain acyl-CoA dehydrogenase (MCAD) mutation IVS3–1G > C that leads to introduction of a premature termination codon by complete missplicing of the MCAD mRNA and is associated with phenotypic diversity ranging from sudden neonatal death to asymptomatic status. Mol Genet Metab. 2004;82:121–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Melegh B, Bene J, Mogyorosy G, Havasi V, Komlosi K, Pajor L, et al. Phenotypic manifestations of the OCTN2 V295X mutation: sudden infant death and carnitine-responsive cardiomyopathy in Roma families. Am J Med Genet A. 2004;131:121–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Becher JC, Keeling JW, Bell J, Wyatt B, McIntosh N. Apolipoprotein E e4 and its prevalence in early childhood death due to sudden infant death syndrome or to recognised causes. Early Hum Dev. 2008;84:549–54.PubMedCrossRefGoogle Scholar
  103. 103.
    Forsyth L, Hume R, Howatson A, Busuttil A, Burchell A. Identification of novel polymorphisms in the glucokinase and glucose-6-phosphatase genes in infants who died suddenly and unexpectedly. J Mol Med. 2005;83:610–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Forsyth L, Scott HM, Howatson A, Busuttil A, Hume R, Burchell A. Genetic variation in hepatic glucose-6-phosphatase system genes in cases of sudden infant death syndrome. J Pathol. 2007;212:112–20.PubMedCrossRefGoogle Scholar
  105. 105.
    Kahn A, Groswasser J, Rebuffat E, Sottiaux M, Blum D, Foerster M, et al. Sleep and cardiorespiratory characteristics of infant victims of sudden death: a prospective case-control study. Sleep. 1992;15:287–92.PubMedGoogle Scholar
  106. 106.
    Andersen M, Arnestad M, Rognum TO, Vege A. Cot death in eastern part of Norway 1984–92. Tidsskr Nor Laegeforen. 1995;115:34–7.PubMedGoogle Scholar
  107. 107.
    Kelmanson IA. An assessment of behavioural characteristics in infants who died of sudden infant death syndrome using the Early Infancy Temperament Questionnaire. Acta Paediatr. 1996;85:977–80.PubMedCrossRefGoogle Scholar
  108. 108.
    Hofmann S, Jaksch M, Bezold R, Mertens S, Aholt S, Paprotta A, et al. Population genetics and disease susceptibility: characterization of central European haplogroups by mtDNA gene mutations, correlation with D loop variants and association with disease. Hum Mol Genet. 1997;6:1835–46.PubMedCrossRefGoogle Scholar
  109. 109.
    Opdal SH, Rognum TO, Vege A, Stave AK, Dupuy BM, Egeland T. Increased number of substitutions in the D-loop of mitochondrial DNA in the sudden infant death syndrome. Acta Paediatr. 1998;87:1039–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Santorelli FM, Schlessel JS, Slonim AE, DiMauro S. Novel mutation in the mitochondrial DNA tRNA glycine gene associated with sudden unexpected death. Pediatr Neurol. 1996;15:145–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Ogle RF, Christodoulou J, Fagan E, Blok RB, Kirby DM, Seller KL, et al. Mitochondrial myopathy with tRNA(Leu(UUR)) mutation and complex I deficiency responsive to riboflavin. J Pediatr. 1997;130:138–45.PubMedCrossRefGoogle Scholar
  112. 112.
    Opdal SH, Rognum TO, Torgersen H, Vege A. Mitochondrial DNA point mutations detected in four cases of sudden infant death syndrome. Acta Paediatr. 1999;88:957–60.PubMedCrossRefGoogle Scholar
  113. 113.
    Opdal SH, Vege Å, Egeland T, Musse MA, Rognum TO. Possible role of mtDNA mutations in sudden infant death. Pediatr Neurol. 2002;27:23–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Arnestad M, Opdal SH, Musse MA, Vege A, Rognum TO. Are substitutions in the first hypervariable region of the mitochondrial DNA displacement-loop in sudden infant death syndrome due to maternal inheritance? Acta Paediatr. 2002;91:1060–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Divne AM, Råsten-Almqvist P, Rajs J, Gyllensten U, Allen M. Analysis of the mitochondrial genome in the sudden infant death syndrome. Acta Paediatr. 2003;92:386–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Arnestad M, Opdal SH, Vege A, Rognum TO. A mitochondrial DNA polymorphism associated with cardiac arrhythmia investigated in sudden infant death syndrome. Acta Paediatr. 2007;96:206–10.PubMedCrossRefGoogle Scholar
  117. 117.
    Opdal SH, Vege A, Arnestad M, Musse MA, Rognum TO. Mitochondrial tRNA genes and flanking regions in sudden infant death syndrome. Acta Paediatr. 2007;96:211–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Stanton AN. Sudden infant death. Overheating and cot death. Lancet. 1984;2:1199–201.PubMedCrossRefGoogle Scholar
  119. 119.
    Sawczenko A, Fleming PJ. Thermal stress, sleeping position, and the sudden infant death syndrome. Sleep. 1996;19:S267–70.PubMedGoogle Scholar
  120. 120.
    Rahim RA, Boyd PA, Ainslie Patrick WJ, Burdon RH. Human heat shock protein gene polymorphisms and sudden infant death syndrome. Arch Dis Child. 1996;75:451–2.PubMedCrossRefGoogle Scholar
  121. 121.
    Fatemi A, Item C, Stockler-Ipsiroglu S, Ipsiroglu O, Sperl W, Patsch W, et al. Sudden infant death: no evidence for linkage to common polymorphisms in the uncoupling protein-1 and the beta3-adrenergic receptor genes. Eur J Pediatr. 2002;161:337–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Bross P, Li Z, Hansen J, Hansen JJ, Nielsen MN, Corydon TJ, et al. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential. J Hum Genet. 2007;52:56–65.PubMedCrossRefGoogle Scholar
  123. 123.
    Ishibe N, Wiencke JK, Zuo ZF, McMillan A, Spitz M, Kelsey KT. Susceptibility to lung cancer in light smokers associated with CYP1A1 polymorphisms in Mexican- and African-Americans. Cancer Epidemiol Biomarkers Prev. 1997;6:1075–80.PubMedGoogle Scholar
  124. 124.
    Bartsch H, Nair U, Risch A, Rojas M, Wikman H, Alexandrov K. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev. 2000;9:3–28.PubMedGoogle Scholar
  125. 125.
    Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, et al. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA. 2002;287:195–202.PubMedCrossRefGoogle Scholar
  126. 126.
    Rand CM, Weese-Mayer DE, Maher BS, Zhou L, Marazita ML, Berry-Kravis EM. Nicotine metabolizing genes GSTT1 and CYP1A1 in sudden infant death syndrome. Am J Med Genet A. 2006;140:1447–52.PubMedGoogle Scholar
  127. 127.
    Poetsch M, Czerwinski M, Wingenfeld L, Vennemann M, Bajanowski T. A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS). Int J Legal Med 2010; (in press).Google Scholar
  128. 128.
    Koukouritaki SB, Hines RN. Flavin-containing monooxygenase genetic polymorphism: impact on chemical metabolism and drug development. Pharmacogenomics. 2005;6:807–22.PubMedCrossRefGoogle Scholar
  129. 129.
    Toruner GA, Kurvathi R, Sugalski R, Shulman L, Twersky S, Pearson PG, et al. Copy number variations in three children with sudden infant death. Clin Genet. 2009;76:63–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Opdal SH, Rognum TO. The sudden infant death syndrome gene: does it exist? Pediatrics. 2004;114:e506–12.PubMedCrossRefGoogle Scholar
  131. 131.
    Hunt CE, Hauck FR. Sudden infant death syndrome. CMAJ. 2006;174:1861–9.PubMedGoogle Scholar
  132. 132.
    Weese-Mayer DE, Ackerman MJ, Marazita ML, Berry-Kravis EM. Sudden Infant Death Syndrome: review of implicated genetic factors. Am J Med Genet A. 2007;143A:771–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Forensic MedicineUniversity of OsloOsloNorway
  2. 2.Pathology ClinicRikshospitalet University HospitalOsloNorway
  3. 3.Rettsmedisinsk InstituttRikshospitaletOsloNorway

Personalised recommendations