Skip to main content
Log in

Germline Mutations in Familial Papillary Thyroid Cancer

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Thyroid cancer, predominantly of papillary histology (PTC), is a common cancer mostly diagnosed sporadically. Hereditary PTC is encountered in ~ 5% of cases and may present at an earlier age, with greater risks of metastasis and recurrence, compared with sporadic cases. The molecular basis of hereditary PTC is unknown in most cases. In this study, the genetic basis of hereditary PTC in three Brazilian families was investigated. Whole exome sequencing (WES) was carried out for probands in each family, and validated, pathogenic/likely pathogenic sequence variants (P/LPSVs) were genotyped in additional family members to establish their putative pathogenic role. Overall, seven P/LPSVs in seven novel genes were detected: p.D283N*ANXA3, p.Y157S*NTN4, p.G172W*SERPINA1, p.G188S*FKBP10, p.R937C*PLEKHG5, p.L32Q*P2RX5, and p.Q76*SAPCD1. These results indicate that these novel genes are seemingly associated with hereditary PTC, but extension and validation in other PTC families are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, eds (2016) SEER Cancer Statistics Review, 1975–2016, National Cancer Institute. Bethesda, MD. Available from https://seer.cancer.gov/csr/1975_2016/.

  2. Giordano TJ. Genomic hallmarks of thyroid neoplasia (2018) Annu Rev Pathol 13:141–162.

    Article  CAS  Google Scholar 

  3. Ngan ES, Lang BH, Liu T, Shum CK, So MT, Lau DK, Leon TY, Cherny SS, Tsai SY, Lo CY, Khoo US, Tam PK, Garcia-Barceló MM (2009) A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J Natl Cancer Inst 101:162–175.

    Article  CAS  Google Scholar 

  4. He H, Nagy R, Liyanarachchi S, Jiao H, Li W, Suster S, Kere J, de la Chapelle A (2009) A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24. Cancer Research 69:625–631.

    Article  CAS  Google Scholar 

  5. Pereira JS, da Silva JG, Tomaz RA, Pinto AE, Bugalho MJ, Leite V, Cavaco BM (2015) Identification of a novel germline FOXE1 variant in patients with familial non-medullary thyroid carcinoma (FNMTC). Endocrine 49:204–214.

    Article  CAS  Google Scholar 

  6. Gara SK, Jia L, Merino MJ, Agarwal SK, Zhang L, Cam M, Patel D, Kebebew E (2015) Germline HABP2 mutation causing familial nonmedullary thyroid cancer. N Engl J Med 373:448–455.

    Article  CAS  Google Scholar 

  7. Tomsic J, He H, de la Chapelle A (2015) HABP2 Mutation and nonmedullary thyroid cancer. N Engl J Med 373:2086.

    PubMed  Google Scholar 

  8. Tomsic J, Fultz R, Liyanarachchi S, He H, Senter L, de la Chapelle A (2016) HABP2 G534E variant in papillary thyroid carcinoma. PLoS One 11:e0146315.

    Article  Google Scholar 

  9. Tomsic J, He H, Akagi K, Liyanarachchi S, Pan Q, Bertani B, Nagy R, Symer DE, Blencowe BJ, de la Chapelle A (2015) A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci Rep 5:10566.

    Article  Google Scholar 

  10. Cavaco BM, Batista PF, Sobrinho LG, Leite V (2008) Mapping a new familial thyroid epithelial neoplasia susceptibility locus to chromosome 8p23.1-p22 by high-density single-nucleotide polymorphism genome-wide linkage analysis. J Clin Endocrinol Metab 93:4426–4430.

    Article  CAS  Google Scholar 

  11. Suh I, Filetti S, Vriens MR, Guerrero MA, Tumino S, Wong M, Shen WT, Kebebew E, Duh QY, Clark OH (2009) Distinct loci on chromosome 1q21 and 6q22 predispose to familial nonmedullary thyroid cancer: a SNP array-based linkage analysis of 38 families. Surgery 146:1073–1080.

    Article  Google Scholar 

  12. Sahasrabudhe R, Stultz J, Williamson J, Lott P, Estrada A, Bohorquez M, Palles C, Polanco-Echeverry G, Jaeger E, Martin L, Magdalena Echeverry M, Tomlinson I, Carvajal-Carmona LG; TCUKIN (2016) The HABP2 G534E variant is an unlikely cause of familial non-medullary thyroid cancer. J Clin Endocrinol Metab 10:1098–1103.

    Article  Google Scholar 

  13. de Mello LEB, Araujo AN, Alves CX, de Paiva FJP, Brandão-Neto J, Cerutti JM (2017) The G534E variant in HABP2 is not associated with increased risk of familial nonmedullary thyroid cancer in Brazilian kindreds. Clin Endocrinol (Oxf) 87:113–114.

    Article  Google Scholar 

  14. Pinheiro M, Drigo SA, Tonhosolo R, Andrade SCS, Marchi FA, Jurisica I, Kowalski LP, Achatz MI, Rogatto SR (2017) HABP2 p.G534E variant in patients with family history of thyroid and breast cancer. Oncotarget 8:40896–40905.

    PubMed  PubMed Central  Google Scholar 

  15. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012)Predicting the functional effect of amino acid substitutions and indels. PLoS One 7:e46688.

    Article  CAS  Google Scholar 

  16. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X (2015) Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet 24:2125–2137.

    Article  CAS  Google Scholar 

  17. Wang Y, Liyanarachchi S, Miller KE, Nieminen TT, Comiskey DF Jr, Li W, Brock P, Symer DE, Akagi K, DeLap KE, He H, Koboldt DC, de la Chapelle A (2019) Identification of rare variants predisposing to thyroid cancer. Thyroid 29:946–955.

    Article  CAS  Google Scholar 

  18. Du R, Liu B, Zhou L, Wang D, He X, Xu X, Zhang L, Niu C, Liu S (2018) Downregulation of annexin A3 inhibits tumor metastasis and decreases drug resistance in breast cancer. Cell Death Dis 9:126.

    Article  Google Scholar 

  19. Jung EJ, Moon HG, Park ST, Cho BI, Lee SM, Jeong CY, Ju YT, Jeong SH, Lee YJ, Choi SK, Ha WS, Lee JS, Kang KR, Hong SC (2010) Decreased annexin A3 expression correlates with tumor progression in papillary thyroid cancer. Proteomics Clin Appl 4:528–537.

    CAS  PubMed  Google Scholar 

  20. Lambert E, Coissieux MM, Laudet V, Mehlen P (2012) Netrin-4 acts as a pro-angiogenic factor during zebrafish development. J Biol Chem 287:3987–3999.

    Article  CAS  Google Scholar 

  21. Xu X, Yan Q, Wang Y, Dong X (2017) NTN4 is associated with breast cancer metastasis via regulation of EMT-related biomarkers. Oncol Rep 37:449–457.

    Article  Google Scholar 

  22. Lv B, Song C, Wu L, Zhang Q, Hou D, Chen P, Yu S, Wang Z, Chu Y, Zhang J, Yang D, Liu J (2014) Netrin-4 as a biomarker promotes cell proliferation and invasion in gastric cancer. Oncotarget 6:9794–9806.

    Google Scholar 

  23. Jayachandran A, Prithviraj P, Lo PH, Walkiewicz M, Anaka M, Woods BL, Tan B, Behren A, Cebon J, McKeown SJ (2016) Identifying and targeting determinants of melanoma cellular invasion. Oncotarget 7:41186–41202.

    Article  Google Scholar 

  24. Eveno C, Contreres JO, Hainaud P, Nemeth J, Dupuy E, Pocard M (2013) Netrin-4 overexpression suppresses primary and metastatic colorectal tumor progression. Oncol Rep 29:73–78.

    Article  Google Scholar 

  25. Latil A, Chêne L, Cochant-Priollet B, Mangin P, Fournier G, Berthon P, Cussenot O (2003) Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int J Cancer 103:306–315.

    Article  CAS  Google Scholar 

  26. Zhang J, Zheng F, Yu G, Yin Y, Lu Q (2013) miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells. Biochem Biophys Res Commun 440:582–588.

    Article  CAS  Google Scholar 

  27. Kwon CH, Park HJ, Choi JH, Lee JR, Kim HK, Jo HJ, Kim HS, Oh N, Song GA, Park DY (2015) Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer. Oncotarget 6:20312–20326.

    PubMed  PubMed Central  Google Scholar 

  28. Farshchian M, Kivisaari A, Ala-Aho R, Riihilä P, Kallajoki M, Grénman R, Peltonen J, Pihlajaniemi T, Heljasvaara R, Kähäri VM (2011) Serpin peptidase inhibitor clade A member 1 (SerpinA1) is a novel biomarker for progression of cutaneous squamous cell carcinoma. Am J Pathol 179:1110–1119.

    Article  CAS  Google Scholar 

  29. Vierlinger K, Mansfeld MH, Koperek O, Nöhammer C, Kaserer K, Leisch F (2011) Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation. BMC Med Genomics 4:30.

    Article  Google Scholar 

  30. Matta J, Morales L, Dutil J, Bayona M, Alvarez C, Suarez E (2013) Differential expression of DNA repair genes in Hispanic women with breast cancer. Mol Cancer Biol 1:54.

    PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Lusk CM, Cho MH, Silverman EK, Qiao D, Zhang R, Scheurer ME, Kheradmand F, Wheeler DA, Tsavachidis S, Armstrong G, Zhu D, Wistuba II, Chow CB, Behrens C, Pikielny CW, Neslund-Dudas C, Pinney SM, Anderson M, Kupert E, Bailey-Wilson J, Gaba C, Mandal D, You M, de Andrade M, Yang P, Field JK, Liloglou T, Davies M, Lissowska J, Swiatkowska B, Zaridze D, Mukeriya A, Janout V, Holcatova I, Mates D, Milosavljevic S, Scelo G, Brennan P, McKay J, Liu G, Hung RJ, Christiani DC, Schwartz AG, Amos CI, Spitz MR (2018) Rare variants in known susceptibility loci and their contribution to risk of lung cancer. J Thorac Oncol 13:1483–1495.

    Article  Google Scholar 

  32. Garnaas MK, Moodie KL, Liu ML, Samant GV, Li K, Marx R, Baraban JM, Horowitz A, Ramchandran R (2008) Syx, a RhoA guanine exchange factor, is essential for angiogenesis in vivo. Circ Res 103:710–716.

    Article  CAS  Google Scholar 

  33. Dachsel JC, Ngok SP, Lewis-Tuffin LJ, Kourtidis A, Geyer R, Johnston L, Feathers R, Anastasiadis PZ (2013) The Rho guanine nucleotide exchange factor Syx regulates the balance of dia and ROCK activities to promote polarized-cancer-cell migration. Mol Cell Biol 33:4909–4918.

    Article  CAS  Google Scholar 

  34. Romano S, D'Angelillo A, Romano MF (2015) Pleiotropic roles in cancer biology for multifaceted proteins FKBPs. Biochim Biophys Acta 1850:2061–2068.

    Article  CAS  Google Scholar 

  35. Ge Y, Xu A, Zhang M, Xiong H, Fang L, Zhang X, Liu C, Wu S (2016) FK506 binding protein 10 is overexpressed and promotes renal cell carcinoma. Urol Int 98:169–176.

    Article  Google Scholar 

  36. Quinn MC, Wojnarowicz PM, Pickett A, Provencher DM, Mes-Masson AM, Davis EC, Tonin PN (2013) FKBP10/FKBP65 expression in high-grade ovarian serous carcinoma and its association with patient outcome. Int J Oncol 42:912–920.

    Article  CAS  Google Scholar 

  37. Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36:293–303.

    Article  Google Scholar 

  38. Greig AV, Linge C, Healy V, Lim P, Clayton E, Rustin MH, McGrouther DA, Burnstock G (2013) Expression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells. J Invest Dermatol 121:315–327.

    Article  Google Scholar 

  39. Gao P, He M, Zhang C, Geng C (2018) Integrated analysis of gene expression signatures associated with colon cancer from three datasets. Gene 654:95–102.

    Article  CAS  Google Scholar 

  40. Bauer AJ. Clinical behavior and genetics of nonsyndromic, familial nonmedullary thyroid cancer. Front Horm Res. 2013;41:141–148. doi: https://doi.org/10.1159/000345674

    Article  CAS  PubMed  Google Scholar 

  41. Kousi M, Katsanis N. Genetic modifiers and oligogenic inheritance. Cold Spring Harb Perspect Med. 2015;5(6). pii: a017145. doi: https://doi.org/10.1101/cshperspect.a017145.

    Article  Google Scholar 

  42. Peiling Yang S, Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer. 2016 Dec;23(12):R577-R595

    Article  Google Scholar 

  43. Dudbridge F, Brown SJ, Ward L, Wilson SG, Walsh JP. How many cases of disease in a pedigree imply familial disease? Ann Hum Genet. 2018 Mar;82(2):109–113. doi: https://doi.org/10.1111/ahg.12222.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all family members for their support.

Funding

This work was partially funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq No. 405053/2013-4) and CAPES, Brazil

Author information

Authors and Affiliations

Authors

Contributions

Marta Sarquis and Debora C. Moraes contributed equally to this manuscript.

Corresponding author

Correspondence to Luiz De Marco.

Ethics declarations

Ethics Statement

The experimental protocols were approved by the Institutional Review Board at the Universidade Federal de Minas Gerais (ETIC 367/07).

Disclosure Statement

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarquis, M., Moraes, D.C., Bastos-Rodrigues, L. et al. Germline Mutations in Familial Papillary Thyroid Cancer. Endocr Pathol 31, 14–20 (2020). https://doi.org/10.1007/s12022-020-09607-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09607-4

Keywords

Navigation