Advertisement

Endocrine Pathology

, Volume 28, Issue 4, pp 326–331 | Cite as

A Novel TP53 Mutation Associated with TWIST1 and SIP1 Expression in an Aggressive Adrenocortical Carcinoma

  • Daniel BulzicoEmail author
  • Davi Coe Torres
  • Gerson Moura Ferreira
  • Bruno Ricardo Barreto Pires
  • Paulo Antônio Silvestre de Faria
  • Rocio Hassan
  • Eliana Abdelhay
  • Mario Vaisman
  • Leonardo Vieira Neto
Article

Abstract

Adrenocortical carcinomas (ACC) are very rare tumors related to TP53 mutations mostly in childhood onset cases. Epithelial-mesenchymal transition (EMT) transcription factors TWIST1 and Smad interacting protein 1 (SIP1) are related to poorer outcomes in other malignancies, but their role in ACC is unknown. We describe a case of an advanced metastatic ACC (Weiss-score of 9) in a patient at age 76. After primary tumor resection, mitotane therapy was started as palliation to low-volume liver metastasis. After a 2-year period of stable disease, the patient died due to brain metastasis. Somatic gene sequencing revealed a novel TP53 mutation in DNA extracted from paraffin-embedded tissue, a deletion of 8bp in exon 8 (c.811_818del8; GAGGTGCG/−) in homo or hemizygosis causing a subsequent frameshift and premature stop codon at position 302. Immunohistochemistry of P53 and p-Ser-15 P53 showed absent tumoral staining. In addition, immunohistochemical analysis showed an increased expression of the mesenchymal markers vimentin and fibronectin. At last, EMT transcription factors TWIST1 and SIP1 were also overexpressed in tumoral cells. This case report describes an aggressive ACC with not only a novel somatic mutation, but also a novel International Agency for Research on Cancer database 8 base-pair deletion in TP53 exon 8. In addition, the expression of EMT inducers TWIST1 and SIP1 have been reported for the first time in an ACC case. Further investigation is needed to clarify the biologic significance of this new TP53 mutation and its role in the EMT process.

Keywords

Adrenocortical carcinoma TWIST1 SIP1 TP53 Mutation 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Ethical Approval

This study was approved by INCA’s independent institutional advisory committee in September 24th, 2014 (protocol 33847514.4.0000.5274). All procedures performed in the study involving the reported case were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Kebebew E, Reiff E, Duh QY, Clark OH, McMillan A (2006) Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress? World J Surg 30 (5):872–878.CrossRefPubMedGoogle Scholar
  2. 2.
    Fassnacht M, Kroiss M, Allolio B (2013) Update in adrenocortical carcinoma. J Clin Endocrinol Metab 98 (12):4551–4564.CrossRefPubMedGoogle Scholar
  3. 3.
    Wasserman JD, Novokmet A, Eichler-Jonsson C, Ribeiro RC, Rodriguez-Galindo C, Zambetti GP, Malkin D (2015) Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: a children’s oncology group study. J Clin Oncol 33 (6):602–609.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Herrmann LJ, Heinze B, Fassnacht M, Willenberg HS, Quinkler M, Reisch N, Zink M, Allolio B, Hahner S (2012) TP53 germline mutations in adult patients with adrenocortical carcinoma. J Clin Endocrinol Metab 97 (3):E476–E485.CrossRefPubMedGoogle Scholar
  5. 5.
    Raymond VM, Else T, Everett JN, Long JM, Gruber SB, Hammer GD (2013) Prevalence of germline TP53 mutations in a prospective series of unselected patients with adrenocortical carcinoma. J Clin Endocrinol Metab 98 (1):E119–E125.CrossRefPubMedGoogle Scholar
  6. 6.
    Barzon L, Chilosi M, Fallo F, Martignoni G, Montagna L, Palu G, Boscaro M (2001) Molecular analysis of CDKN1C and TP53 in sporadic adrenal tumors. Eur J Endocrinol 145 (2):207–212.CrossRefPubMedGoogle Scholar
  7. 7.
    Reincke M, Karl M, Travis WH, Mastorakos G, Allolio B, Linehan HM, Chrousos GP (1994) p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 78 (3):790–794.PubMedGoogle Scholar
  8. 8.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119 (6):1420–1428.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119 (6):1429–1437.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253 (5015):49–53CrossRefPubMedGoogle Scholar
  11. 11.
    Rodriguez-Galindo C, Figueiredo BC, Zambetti GP, Ribeiro RC (2005) Biology, clinical characteristics, and management of adrenocortical tumors in children. Pediatr Blood Cancer 45 (3):265–273.CrossRefPubMedGoogle Scholar
  12. 12.
    Libe R, Bertherat J (2005) Molecular genetics of adrenocortical tumours, from familial to sporadic diseases. Eur J Endocrinol 153 (4):477–487.CrossRefPubMedGoogle Scholar
  13. 13.
    Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg TA, Ciriello G, Kim S, Assie G, Morozova O, Akbani R, Shih J, Hoadley KA, Choueiri TK, Waldmann J, Mete O, Robertson AG, Wu HT, Raphael BJ, Shao L, Meyerson M, Demeure MJ, Beuschlein F, Gill AJ, Sidhu SB, Almeida MQ, Fragoso MC, Cope LM, Kebebew E, Habra MA, Whitsett TG, Bussey KJ, Rainey WE, Asa SL, Bertherat J, Fassnacht M, Wheeler DA, Hammer GD, Giordano TJ, Verhaak RG (2016) Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 29 (5):723–736.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Erill N, Colomer A, Verdu M, Roman R, Condom E, Hannaoui N, Banus JM, Cordon-Cardo C, Puig X (2004) Genetic and immunophenotype analyses of TP53 in bladder cancer: TP53 alterations are associated with tumor progression. Diagn Mol Pathol 13 (4):217–223.CrossRefPubMedGoogle Scholar
  15. 15.
    Salinas-Sanchez AS, Atienzar-Tobarra M, Lorenzo-Romero JG, Sanchez-Sanchez F, Gimenez-Bachs JM, Donate-Moreno MJ, Pastor-Navarro H, Hernandez-Millan I, Segura-Martin M, Escribano-Martinez J (2007) Sensitivity and specificity of p53 protein detection by immunohistochemistry in patients with urothelial bladder carcinoma. Urol Int 79 (4):321–327.CrossRefPubMedGoogle Scholar
  16. 16.
    Kobel M, Piskorz AM, Lee S, Lui S, LePage C, Marass F, Rosenfeld N, Mes Masson AM, Brenton JD (2016) Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. J Pathol Clin Res 2 (4):247–258.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 33 (20):6566–6578.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhu QQ, Ma C, Wang Q, Song Y, Lv T (2016) The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol 37 (1):185–197.CrossRefPubMedGoogle Scholar
  19. 19.
    Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112 (12):1776–1784.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xu Y, Hu B, Qin L, Zhao L, Wang Q, Jiang J (2014) SRC-1 and Twist1 expression positively correlates with a poor prognosis in human breast cancer. Int J Biol Sci 10 (4):396–403.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang L, Yang J, Li J, Shen X, Le Y, Zhou C, Wang S, Zhang S, Xu D, Gong Z (2015) MircoRNA-33a inhibits epithelial-to-mesenchymal transition and metastasis and could be a prognostic marker in non-small cell lung cancer. Sci Rep 5:13677.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, Peng WL, Wu JC (2009) Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 50 (5):1464–1474.CrossRefPubMedGoogle Scholar
  23. 23.
    Yan-Qi Z, Xue-Yan G, Shuang H, Yu C, Fu-Lin G, Fei-Hu B, Shi-Ren S, Xu-Feng W, Jie D, Dai-Ming F (2007) Expression and significance of TWIST basic helix-loop-helix protein over-expression in gastric cancer. Pathology 39 (5):470–475.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, Song L, Lv D, Nakano I, Hu B, Cheng SY, Feng H (2016) SHP-2-upregulated ZEB1 is important for PDGFRalpha-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene 35 (43):5641–5652.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Giordano TJ, Thomas DG, Kuick R, Lizyness M, Misek DE, Smith AL, Sanders D, Aljundi RT, Gauger PG, Thompson NW, Taylor JM, Hanash SM (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162 (2):521–531.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Leal LF, Mermejo LM, Ramalho LZ, Martinelli CE, Jr., Yunes JA, Seidinger AL, Mastellaro MJ, Cardinalli IA, Brandalise SR, Moreira AC, Tone LG, Scrideli CA, Castro M, Antonini SR (2011) Wnt/beta-catenin pathway deregulation in childhood adrenocortical tumors. J Clin Endocrinol Metab 96 (10):3106–3114.CrossRefPubMedGoogle Scholar
  27. 27.
    Ragazzon B, Libe R, Gaujoux S, Assie G, Fratticci A, Launay P, Clauser E, Bertagna X, Tissier F, de Reynies A, Bertherat J (2010) Transcriptome analysis reveals that p53 and {beta}-catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res 70 (21):8276–8281.CrossRefPubMedGoogle Scholar
  28. 28.
    Salomon A, Keramidas M, Maisin C, Thomas M (2015) Loss of beta-catenin in adrenocortical cancer cells causes growth inhibition and reversal of epithelial-to-mesenchymal transition. Oncotarget 6 (13):11421–11433.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tissier F, Cavard C, Groussin L, Perlemoine K, Fumey G, Hagnere AM, Rene-Corail F, Jullian E, Gicquel C, Bertagna X, Vacher-Lavenu MC, Perret C, Bertherat J (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65 (17):7622–7627.CrossRefPubMedGoogle Scholar
  30. 30.
    Gomes DC, Leal LF, Mermejo LM, Scrideli CA, Martinelli CE, Jr., Fragoso MC, Latronico AC, Tone LG, Tucci S, Yunes JA, Cardinalli IA, Mastellaro MJ, Brandalise SR, Ramalho F, Moreira AC, Ramalho LN, de Castro M, Antonini SR (2014) Sonic hedgehog signaling is active in human adrenal cortex development and deregulated in adrenocortical tumors. J Clin Endocrinol Metab 99 (7):E1209–E1216.CrossRefPubMedGoogle Scholar
  31. 31.
    Ronchi CL, Sbiera S, Altieri B, Steinhauer S, Wild V, Bekteshi M, Kroiss M, Fassnacht M, Allolio B (2015) Notch1 pathway in adrenocortical carcinomas: correlations with clinical outcome. Endocr Relat Cancer 22 (4):531–543.CrossRefPubMedGoogle Scholar
  32. 32.
    Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98 (18):10356–10361.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen CC, Juan CW, Chen KY, Chang YC, Lee JC, Chang MC (2016) Upregulation of RPA2 promotes NF-kappaB activation in breast cancer by relieving the antagonistic function of menin on NF-kappaB-regulated transcription. Carcinogenesis. doi: 10.1093/carcin/bgw123.Google Scholar
  34. 34.
    Fendrich V, Waldmann J, Esni F, Ramaswamy A, Mullendore M, Buchholz M, Maitra A, Feldmann G (2007) Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocr Relat Cancer 14 (3):865–874.CrossRefPubMedGoogle Scholar
  35. 35.
    Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I, Karsan A (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204 (12):2935–2948.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Malaguarnera R, Belfiore A (2014) The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Front Endocrinol (Lausanne) 5:10. doi: 10.3389/fendo.2014.00010 Google Scholar
  37. 37.
    Sigloch FC, Burk UC, Biniossek ML, Brabletz T, Schilling O (2015) miR-200c dampens cancer cell migration via regulation of protein kinase A subunits. Oncotarget 6 (27):23874–23889.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J, Sakuragi N (2013) Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32 (27):3286–3295.CrossRefPubMedGoogle Scholar
  39. 39.
    Jiang FZ, He YY, Wang HH, Zhang HL, Zhang J, Yan XF, Wang XJ, Che Q, Ke JQ, Chen Z, Tong H, Zhang YL, Wang FY, Li YR, Wan XP (2015) Mutant p53 induces EZH2 expression and promotes epithelial-mesenchymal transition by disrupting p68-Drosha complex assembly and attenuating miR-26a processing. Oncotarget 6 (42):44660–44674.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Iwanicki MP, Chen HY, Iavarone C, Zervantonakis IK, Muranen T, Novak M, Ince TA, Drapkin R, Brugge JS (2016) Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. JCI Insight 1 (10):e86829CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Daniel Bulzico
    • 1
    • 2
    Email author
  • Davi Coe Torres
    • 3
  • Gerson Moura Ferreira
    • 4
  • Bruno Ricardo Barreto Pires
    • 4
  • Paulo Antônio Silvestre de Faria
    • 5
  • Rocio Hassan
    • 3
  • Eliana Abdelhay
    • 4
  • Mario Vaisman
    • 6
  • Leonardo Vieira Neto
    • 2
    • 6
  1. 1.Endocrine Oncology UnitBrazilian National Cancer Institute—INCARio de Janeiro/RJBrazil
  2. 2.Endocrinology SectionFederal Hospital of LagoaRio de JaneiroBrazil
  3. 3.Laboratory of Oncovirology, Center for Bone Marrow TransplantsBrazilian National Cancer Institute—INCARio de JaneiroBrazil
  4. 4.Stem Cell Laboratory, Center for Bone Marrow TransplantsBrazilian National Cancer Institute – INCARio de JaneiroBrazil
  5. 5.Division of PathologyBrazilian National Cancer Institute – INCARio de JaneiroBrazil
  6. 6.Department of Internal Medicine and Endocrinology Section—Medical School and Clementino Fraga Filho University HospitalRio de Janeiro Federal UniversityRio de JaneiroBrazil

Personalised recommendations