Advertisement

Endocrine Pathology

, Volume 25, Issue 3, pp 229–235 | Cite as

Metallothionein-3 (MT-3) in the Human Adrenal Cortex and its Disorders

  • Saulo J. A. Felizola
  • Yasuhiro Nakamura
  • Yuki Arata
  • Kazue Ise
  • Fumitoshi Satoh
  • William E. Rainey
  • Sanae Midorikawa
  • Shinichi Suzuki
  • Hironobu Sasano
Article

Abstract

Metallothionein-3 (MT-3) is an intracellular, low molecular weight protein mainly distributed in the central nervous system but also in various peripheral organs and several types of human neoplasms. However, details of MT-3 expression have not been examined in human adrenal cortex and its disorders. The mRNA levels of MT-3 were first evaluated by quantitative RT-PCR (qPCR) in adrenocortical aldosterone-producing adenoma (APA: 11) and cortisol-producing adenoma (CPA: 14). In addition, MT-3 immunohistochemistry was performed in non-pathological adrenal glands (NA: 19), idiopathic hyperaldosteronism (IHA: 10), APA (20), CPA (24), adjacent non-neoplastic adrenal glands of adenoma (AAG: 20), and adrenocortical carcinoma (ACC: 8). H295R cells were also treated with angiotensin-II or forskolin in a time-dependent manner, and the changes of MT-3 mRNA levels were evaluated by qPCR. Results of qPCR analysis demonstrated that MT-3 mRNA levels were significantly higher in APA than CPA (P = 0.0004). MT-3 immunoreactivity was detected in the zona glomerulosa of NA, IHA, and AAG, as well as in APA, CPA, and ACC. When treated with angiotensin-II and forskolin, MT-3 mRNA levels reached a peak by 12 h in H295R cells, with significantly higher levels compared to control non-treated cells (P < 0.01). The presence of MT-3 in the ZG of NA, IHA, and AAG, as well as APA may imply a role in the pathophysiology of aldosterone-producing tissues.

Keywords

Adrenal cortex Zona glomerulosa Adrenocortical adenoma Aldosterone Metallothionein Immunohistochemistry 

Notes

Acknowledgments

This work was partly supported by the Takeda Science Foundation and partly supported by the grant for Research on Intractable Diseases from the Japanese Ministry of Health, Labor and Welfare. The first author received scholarship support from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

References

  1. 1.
    Faller P. Neuronal growth-inhibitory factor (metallothionein-3): reactivity and structure of metal-thiolate clusters. FEBS J. 277:2921–2930, 2010.PubMedCrossRefGoogle Scholar
  2. 2.
    Henkel G, Krebs B. Metallothioneins: zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features--structural aspects and biological implications. Chem Rev. 104:801–24, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell Mol Life Sci. 59:627–647, 2002.PubMedCrossRefGoogle Scholar
  4. 4.
    Palmiter RD. The elusive function of metallothioneins.Proc Natl Acad Sci U S A. 95:8428–8430, 1998.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lee S, Koh J. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Molecular Brain. 3:30, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron. 7:337–347, 1991.PubMedCrossRefGoogle Scholar
  7. 7.
    Dutta R, Sens DA, Somji S, Sens MA, Garrett SH. Metallothionein isoform 3 expression inhibits cell growth and increases drug resistance of PC-3 prostate cancer cells. Prostate. 52:89–97, 2002.PubMedCrossRefGoogle Scholar
  8. 8.
    Garrett SH, Sens MA, Todd JH, Somji S, Sens DA. Expression of MT-3 protein in the human kidney. Toxicology letters. 105:207–214, 1999.PubMedCrossRefGoogle Scholar
  9. 9.
    Hozumi I, Suzuki JS, Kanazawa H, Hara A, Saio M, Inuzuka T, Miyairi S, Naganuma A, Tohyama C. Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurosci Lett. 438:54–58, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Moffatt P, Séguin C. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol. 17:501–510, 1998.PubMedCrossRefGoogle Scholar
  11. 11.
    Peng D, Hu TL, Jiang A, Washington MK, Moskaluk CA, Schneider-Stock R, El-Rifai W. Location-specific epigenetic regulation of the metallothionein 3 gene in esophageal adenocarcinomas. PLoS One. 6:e22009, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sens MA, Somji S, Garrett SH, Beall CL, Sens DA. Metallothionein isoform 3 overexpression is associated with breast cancers having a poor prognosis. Am J Pathol. 159:21–26, 2001.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Somji S, Garrett SH, Zhou XD, Zheng Y, Sens DA, Sens MA. Absence of Metallothionein 3 Expression in Breast Cancer is a Rare, But Favorable Marker of Outcome that is Under Epigenetic Control. Toxicol Environ Chem. 92:1673–1695, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Werynska B, Pula B, Muszczynska-Bernhard B, Gomulkiewicz A, Jethon A, Podhorska-Okolow M, Jankowska R, Dziegiel P. Expression of metallothionein-III in patients with non-small cell lung cancer. Anticancer Res. 33:965–74, 2013.PubMedGoogle Scholar
  15. 15.
    Wang T, Satoh F, Morimoto R, Nakamura Y, Sasano H, Auchus RJ, Edwards MA, Rainey WE. Gene expression profiles in aldosterone-producing adenomas and adjacent adrenal glands. Eur J Endocrinol. 164:613–619, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Szajerka A, Dziegiel P, Szajerka T, Zabel M, Winowski J, Grzebieniak Z. Immunohistochemical evaluation of metallothionein, Mcm-2 and Ki-67 antigen expression in tumors of the adrenal cortex. Anticancer Res. 28:2959–2965, 2008.PubMedGoogle Scholar
  17. 17.
    Belloso E, Hernandez J, Giralt M, Kille CD, Hidalgo J. Effect of stress on mouse and rat brain metallothionein I and II mRNA levels. Neuroendocrinology. 64: 430–439, 1996.PubMedCrossRefGoogle Scholar
  18. 18.
    El Ghazi I, Martin BL, Armitage IM. Metallothionein-3 is a component of a multiprotein complex in the mouse brain. Exp Biol Med. 231: 1500–1506, 2006.Google Scholar
  19. 19.
    Hidalgo J, Belloso E, Hernandez J, Gasull T, Molinero A. Role of glucocorticoids on rat brain metallothionein-I and –III response to stress. Stress 1: 231–240, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Kobayashi H, Uchida Y, Ihara Y, Nakajima K, Kohsaka S, Miyatake T, Tsuji S. Molecular cloning of rat growth inhibitory factor cDNA and the expression in the central nervous system. Brain Res Mol Brain Res. 19: 188–194, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Felizola SJA, Nakamura Y, Hui XG, Satoh F, Morimoto R, M McNamara K, Midorikawa S, Suzuki S, Rainey WE, Sasano H. Estrogen-related receptor α in normal adrenal cortex and adrenocortical tumors: involvement in development and oncogenesis. Mol Cell Endocrinol. 365:207–211, 2013.Google Scholar
  22. 22.
    Nogueira EF, Vargas CA, Otis M, Gallo-Payet N, Bollag WB, Rainey WE. Angiotensin-II acute regulation of rapid response genes in human, bovine, and rat adrenocortical cells. J Mol Endocrinol. 39:365–374, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Hui XG, Akahira J, Suzuki T, Nio M, Nakamura Y, Suzuki H, Rainey WE, Sasano H. Development of the human adrenal zona reticularis: morphometric and immunohistochemical studies from birth to adolescence. J Endocrinol. 203:241–252, 2009.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ehrhart-Bornstein M, Hilbers U. Neuroendocrine properties of adrenocortical cells. Horm Metab Res. 30:436–439, 1998.PubMedCrossRefGoogle Scholar
  25. 25.
    Ye P, Mariniello B, Mantero F, Shibata H, Rainey WE. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism. J Endocrinol. 195:39–48, 2007.PubMedCrossRefGoogle Scholar
  26. 26.
    Felizola SJA, Nakamura Y, Satoh F, Morimoto R, Kikuchi K, Nakamura T, Hozawa A, Wang L, Onodera Y, Ise K, McNamara KM, Midorikawa S, Suzuki S, Sasano H. Glutamate receptors and the regulation of steroidogenesis in the human adrenal gland: The metabotropic pathway. Mol Cell Endocrinol. 382: 170–177, 2014. doi:  10.1016/j.mce.2013.09.025.PubMedCrossRefGoogle Scholar
  27. 27.
    Papotti M, Volante M, Duregon E, Delsedime L, Terzolo M, Berruti A, Rosai J. Adrenocortical tumors with myxoid features: a distinct morphologic and phenotypical variant exhibiting malignant behavior. Am J Surg Pathol. 34:973–983, 2010.PubMedCrossRefGoogle Scholar
  28. 28.
    Hu C, Rusin CG, Tan Z, Guagliardo NA, Barrett PQ. Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electrical oscillators. J Clin Invest. 122:2046–2053, 2012.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Giorgi RR, Correa-Giannella ML, Casarini AP, Machado MC, Bronstein MD, Cescato VA, Giannella-Neto D. Metallothionein isoform 3 gene is differentially expressed in corticotropin-producing pituitary adenomas. Neuroendocrinology. 82:208–214, 2005.PubMedCrossRefGoogle Scholar
  30. 30.
    Peyre M, Commo F, Dantas-Barbosa C, Andreiuolo F, Puget S, Lacroix L, Drusch F, Scott V, Varlet P, Mauguen A, Dessen P, Lazar V, Vassal G, Grill J. Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS One. 5(9):e12932, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhou XD, Sens DA, Sens MA, Namburi VB, Singh RK, Garrett SH, Somji S. Metallothionein-1 and −2 expression in cadmium- or arsenic-derived human malignant urothelial cells and tumor heterotransplants and as a prognostic indicator in human bladder cancer. Toxicol Sci. 91:467–475, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Fallo F, Barzon L, Biasi F, Altavilla G, Boscaro M, Sonino N. Zona fasciculata-like histotype and aldosterone response to upright posture are not related in aldosterone-producing adenomas. Exp Clin Endocrinol Diabetes. 106:74–78, 1998.PubMedCrossRefGoogle Scholar
  33. 33.
    Gomez-Sanchez CE, Gomez-Sanchez EP. Aldosterone-producing adenomas: mining for genes. Hypertension. 55:1306–1307, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kim HG, Hwang YP, Han EH, Choi CY, Yeo CY, Kim JY, Lee KY, Jeong HG. Metallothionein-III provides neuronal protection through activation of nuclear factor-kappaB via the TrkA/phosphatidylinositol-3 kinase/Akt signaling pathway. Toxicol Sci.112:435–449, 2009.PubMedCrossRefGoogle Scholar
  35. 35.
    Su H, Gu Y, Li F, Wang Q, Huang B, Jin X, Ning G, Sun F. The PI3K/AKT/mTOR signaling pathway is overactivated in primary aldosteronism. PLoS One. 8:e62399, 2013. doi:  10.1371/journal.pone.0062399.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Romero DG, Plonczynski M, Vergara GR, Gomez-Sanchez EP, Gomez-Sanchez CE. Angiotensin II early regulated genes in H295R human adrenocortical cells. Physiol Genomics. 19:106–116, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Nogueira EF, Rainey WE. Regulation of aldosterone synthase by activator transcription factor/cAMP response element-binding protein family members. Endocrinology. 151:1060–1070, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Nogueira EF, Bollag WB, Rainey WE. Angiotensin II regulation of adrenocortical gene transcription. Mol Cell Endocrinol. 302:230–236, 2009.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Saulo J. A. Felizola
    • 1
  • Yasuhiro Nakamura
    • 1
  • Yuki Arata
    • 1
  • Kazue Ise
    • 1
  • Fumitoshi Satoh
    • 2
  • William E. Rainey
    • 3
  • Sanae Midorikawa
    • 4
  • Shinichi Suzuki
    • 5
  • Hironobu Sasano
    • 1
  1. 1.Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Division of Nephrology, Endocrinology and Vascular MedicineTohoku University HospitalSendaiJapan
  3. 3.Department of Physiology and MedicineUniversity of MichiganAnn ArborUSA
  4. 4.Department of Radiation Health ManagementFukushima Medical UniversityFukushimaJapan
  5. 5.Department of Organ Regulatory SurgeryFukushima Medical UniversityFukushimaJapan

Personalised recommendations