Endocrine Pathology

, Volume 24, Issue 2, pp 77–82 | Cite as

Clinical Utility of KAP-1 Expression in Thyroid Lesions

  • Mariana Bonjiorno Martins
  • Marjory Alana Marcello
  • Elaine Cristina Morari
  • Lucas Leite Cunha
  • Fernando Augusto Soares
  • José Vassallo
  • Laura Sterian Ward
Article

Abstract

Although there are evidences of the involvement of KAP-1 in other tumors, data on differentiated thyroid carcinomas (DTC) are still lacking. We aimed to evaluate KAP-1 clinical utility in the diagnosis and prognosis of DTC. We used both visual immunohistochemistry and a semiquantitative analysis to evaluate KAP-1 expression in 230 thyroid carcinomas and 131 noncancerous thyroid nodules. There were 43 follicular carcinomas (FC) and 187 papillary thyroid carcinomas (PTC), including 130 classic (CPTC), 4 tall cells (TCPTC), and 53 follicular variants (FVPTC). Patients were followed up for 53.8 ± 41 months. They were classified as free-of-disease (142 cases) or poor outcome (25 cases—10 deaths), according to their serum Tg levels and image evidences. KAP-1 was identified in 78 % PTC, 75 % TCPTC, 74 % FC, 72 % FVPTC, 55 % FA, 44 % hyperplasia, and 11 % normal thyroid tissues. A ROC analysis identified malignant nodules with 69 % sensitivity and 75 % specificity, using a cutoff of 73.19. In addition to distinguishing benign from malignant thyroid tissues (p < 0.0001), KAP-1 expression differentiated CPTC from nodular hyperplasia (p < 0.0001), CPTC from FA (p = 0.0028), FVPTC from hyperplasia (p = 0.0039), and FC from hyperplasia (p = 0.0025). Furthermore, KAP-1 was more expressed in larger tumors (>4 cm; p = 0.0038) and in individuals who presented recurrences/metastases (p = 0.0130). We suggest that KAP-1 may help diagnose thyroid nodules, characterize follicular-patterned thyroid lesions, and identify individuals with poor prognosis.

Keywords

KAP-1 Thyroid nodule Follicular thyroid lesions Outcome 

Notes

Acknowledgments

We thank the State of São Paulo Research Foundation (Fapesp) for supporting this study.

References

  1. 1.
    Li H, Robinson KA, Anton B, Saldanha IJ, Ladenson PW (2011) Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 96 (11):E1719-1726. doi: 10.1210/jc.2011-0459 PubMedCrossRefGoogle Scholar
  2. 2.
    Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM, Gawande AA, Moore FD, Jr., Kim BW, Nose V, Marqusee E, Larsen PR, Alexander EK (2007) Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer 111 (6):508–516. doi: 10.1002/cncr.23116 PubMedCrossRefGoogle Scholar
  3. 3.
    Wang CC, Friedman L, Kennedy GC, Wang H, Kebebew E, Steward DL, Zeiger MA, Westra WH, Wang Y, Khanafshar E, Fellegara G, Rosai J, Livolsi V, Lanman RB (2011) A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid 21 (3):243–251. doi: 10.1089/thy.2010.0243 PubMedCrossRefGoogle Scholar
  4. 4.
    Yu GP, Li JC, Branovan D, McCormick S, Schantz SP (2010) Thyroid cancer incidence and survival in the national cancer institute surveillance, epidemiology, and end results race/ethnicity groups. Thyroid 20 (5):465–473. doi: 10.1089/thy.2008.0281 PubMedCrossRefGoogle Scholar
  5. 5.
    Ito Y, Miyauchi A, Inoue H, Fukushima M, Kihara M, Higashiyama T, Tomoda C, Takamura Y, Kobayashi K, Miya A (2010) An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg 34 (1):28–35. doi:10.1007/s00268-009-0303-0 PubMedCrossRefGoogle Scholar
  6. 6.
    SEER (2012) Cancer Statistics Review 1975–2009. http://seer.cancer.gov/csr/1975_2009_pops09. Accessed 23 June 2012
  7. 7.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63 (1):11–30. doi: 10.3322/caac.21166 PubMedCrossRefGoogle Scholar
  8. 8.
    Xing M (2010) Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 321 (1):86–93. doi: 10.1016/j.mce.2009.10.012 PubMedCrossRefGoogle Scholar
  9. 9.
    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, LiVolsi VA, Mandel SJ, Raab SS, Rosai J, Steward DL, Walsh PS, Wilde JI, Zeiger MA, Lanman RB, Haugen BR (2012) Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 367 (8):705–715. doi: 10.1056/NEJMoa1203208 PubMedCrossRefGoogle Scholar
  10. 10.
    Ozato K, Shin DM, Chang TH, Morse HC, 3rd (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8 (11):849–860. doi: nri2413[pii]10.1038/nri2413 Google Scholar
  11. 11.
    Li X, Lee YK, Jeng JC, Yen Y, Schultz DC, Shih HM, Ann DK (2007) Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. J Biol Chem 282 (50):36177–36189. doi: 10.1074/jbc.M706912200 PubMedCrossRefGoogle Scholar
  12. 12.
    Iyengar S, Farnham PJ (2011) KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 286 (30):26267–26276. doi: 10.1074/jbc.R111.252569 PubMedCrossRefGoogle Scholar
  13. 13.
    Yokoe T, Toiyama Y, Okugawa Y, Tanaka K, Ohi M, Inoue Y, Mohri Y, Miki C, Kusunoki M (2010) KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann Surg Oncol 17 (3):821–828. doi: 10.1245/s10434-009-0795-8 PubMedCrossRefGoogle Scholar
  14. 14.
    Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ (2009) A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 23 (7):837–848. doi: 10.1101/gad.1769609 PubMedCrossRefGoogle Scholar
  15. 15.
    Cammas F, Herzog M, Lerouge T, Chambon P, Losson R (2004) Association of the transcriptional corepressor TIF1beta with heterochromatin protein 1 (HP1): an essential role for progression through differentiation. Genes Dev 18 (17):2147–2160. doi: 10.1101/gad.30290418/17/2147 PubMedCrossRefGoogle Scholar
  16. 16.
    Cammas F, Oulad-Abdelghani M, Vonesch JL, Huss-Garcia Y, Chambon P, Losson R (2002) Cell differentiation induces TIF1beta association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 115 (Pt 17):3439–3448PubMedGoogle Scholar
  17. 17.
    Nakamura Y, Yamagata T, Maki K, Sasaki K, Kitabayashi I, Mitani K (2006) TEL/ETV6 binds to corepressor KAP1 via the HLH domain. Int J Hematol 84 (4):377–380. doi: 10.1532/IJH97.06151 PubMedCrossRefGoogle Scholar
  18. 18.
    Rooney JW, Calame KL (2001) TIF1beta functions as a coactivator for C/EBPbeta and is required for induced differentiation in the myelomonocytic cell line U937. Genes Dev 15 (22):3023–3038. doi:10.1101/gad.937201 PubMedCrossRefGoogle Scholar
  19. 19.
    Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8 (8):816–824. doi: 10.1038/nm733nm733 PubMedGoogle Scholar
  20. 20.
    Silva FP, Hamamoto R, Furukawa Y, Nakamura Y (2006) TIPUH1 encodes a novel KRAB zinc-finger protein highly expressed in human hepatocellular carcinomas. Oncogene 25 (36):5063–5070. doi: 10.1038/sj.onc.1209517 PubMedCrossRefGoogle Scholar
  21. 21.
    Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19 (11):1167–1214. doi: 10.1089/thy.2009.0110 PubMedCrossRefGoogle Scholar
  22. 22.
    Cunha LL, Morari EC, Guihen AC, Razolli D, Gerhard R, Nonogaki S, Soares FA, Vassallo J, Ward LS (2012) Infiltration of a mixture of immune cells may be related to good prognosis in patients with differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 77 (6):918–925. doi: 10.1111/j.1365-2265.2012.04482.x CrossRefGoogle Scholar
  23. 23.
    Cunha LL, Morari EC, Guihen AC, Razolli D, Gerhard R, Nonogaki S, Soares FA, Vassallo J, Ward LS (2012) Infiltration of a mixture of different immune cells may be related to molecular profile of differentiated thyroid cancer. Endocr Relat Cancer 19 (3):L31-36. doi: 10.1530/ERC-11-0285 PubMedCrossRefGoogle Scholar
  24. 24.
    Morari EC, Marcello MA, Guilhen AC, Cunha LL, Latuff P, Soares FA, Vassallo J, Ward LS (2011) Use of sodium iodide symporter expression in differentiated thyroid carcinomas. Clin Endocrinol (Oxf) 75 (2):247–254. doi: 10.1111/j.1365-2265.2011.04032.x CrossRefGoogle Scholar
  25. 25.
    Morari EC, Silva JR, Guilhen AC, Cunha LL, Marcello MA, Soares FA, Vassallo J, Ward LS (2010) Muc-1 expression may help characterize thyroid nodules but does not predict patients’ outcome. Endocr Pathol 21 (4):242–249. doi: 10.1007/s12022-010-9137-4 PubMedCrossRefGoogle Scholar
  26. 26.
    Cunha LL, Morari EC, Nonogaki S, Soares FA, Vassallo J, Ward LS (2012) Foxp3 expression is associated with aggressiveness in differentiated thyroid carcinomas. Clinics (Sao Paulo) 67 (5):483–488CrossRefGoogle Scholar
  27. 27.
    Ho J, Kong JW, Choong LY, Loh MC, Toy W, Chong PK, Wong CH, Wong CY, Shah N, Lim YP (2009) Novel breast cancer metastasis-associated proteins. J Proteome Res 8 (2):583–594. doi: 10.1021/pr8007368 CrossRefGoogle Scholar
  28. 28.
    Stroup AM, Harrell CJ, Herget KA (2012) Long-term survival in young women: hazards and competing risks after thyroid cancer. J Cancer Epidemiol 2012:641372. doi: 10.1155/2012/641372 PubMedGoogle Scholar
  29. 29.
    Hirsch D, Ginat M, Levy S, Benbassat C, Weinstein R, Tsvetov G, Singer J, Shraga-Slutzky I, Grozinski-Glasberg S, Mansiterski Y, Shimon I,t Reicher-Atir R (2009) Illness perception in patients with differentiated epithelial cell thyroid cancer. Thyroid 19 (5):459–465. doi: 10.1089/thy.2008.0360 PubMedCrossRefGoogle Scholar
  30. 30.
    Kijanka G, Hector S, Kay EW, Murray F, Cummins R, Murphy D, MacCraith BD, Prehn JH, Kenny D (2010) Human IgG antibody profiles differentiate between symptomatic patients with and without colorectal cancer. Gut 59 (1):69–78. doi:10.1136/gut.2009.178574 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mariana Bonjiorno Martins
    • 1
  • Marjory Alana Marcello
    • 1
  • Elaine Cristina Morari
    • 1
  • Lucas Leite Cunha
    • 1
  • Fernando Augusto Soares
    • 2
  • José Vassallo
    • 3
  • Laura Sterian Ward
    • 1
  1. 1.Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences (FCM)University of Campinas (Unicamp)CampinasBrazil
  2. 2.Department of PathologyHospital AC Camargo—Antonio Prudente FoundationSão PauloBrazil
  3. 3.Laboratory Investigative and Molecular Pathology (Ciped), Faculty of Medical Sciences (FCM)University of Campinas (Unicamp)CampinasBrazil

Personalised recommendations