Endocrine Pathology

, Volume 21, Issue 3, pp 166–177 | Cite as

Parafibromin and APC as Screening Markers for Malignant Potential in Atypical Parathyroid Adenomas

  • C. Christofer Juhlin
  • Inga-Lena Nilsson
  • Kenth Johansson
  • Felix Haglund
  • Andrea Villablanca
  • Anders Höög
  • Catharina Larsson


The identification of parathyroid carcinomas is based upon histopathological criteria in which an invasive growth pattern or distant metastasis is demonstrated. A dilemma arises when tumours present with atypical histopathological features but lack direct evidence of malignancy. Recently, reduced expression or loss of the tumour suppressor proteins parafibromin and adenomatous polyposis coli (APC) has been associated with parathyroid malignancy. We report results from APC and parafibromin expression analyses by immunohistochemistry and Western blot in five cases of atypical adenoma, a single case of carcinoma and 54 adenomas without atypical features. Complete loss of APC immunoreactivity and reduced expression of parafibromin was evident in two of the atypical adenomas and in the parathyroid carcinoma. By contrast, all adenomas displayed APC expression, including two cases with hyperparathyroidism 2 gene (HRPT2) mutations and loss of parafibromin expression. We conclude that loss of APC is a frequent molecular event in atypical adenomas and carcinomas, but not in adenomas. Following verification in an independent material, APC could become a valuable tool when assessing parathyroid tumours in the clinical setting. Furthermore, the molecular resemblance of atypical adenomas with carcinoma concerning parafibromin and APC expression indicates that atypical adenomas should be subjects to watchful follow-up.


Parafibromin HRPT2 APC Immunohistochemistry Atypical parathyroid adenoma Parathyroid carcinoma 


  1. 1.
    Shane E. Clinical review 122: parathyroid carcinoma. J Clin Endocrinol Metab 86: 485–493, 2001.CrossRefPubMedGoogle Scholar
  2. 2.
    DeLellis RA, Lloyd RV, Heitz PU, Eng C. Pathology and genetics of the tumours of endocrine organs. In DeLellis RA, Lloyd RV, Heitz PU and Eng C, ed. WHO classification of tumours. Lyon: IARC Press, 2006; 124–127.Google Scholar
  3. 3.
    Sandelin K, Tullgren O, Farnebo LO. Clinical course of metastatic parathyroid cancer. World J Surg. 18: 594–598, 1994.CrossRefPubMedGoogle Scholar
  4. 4.
    Ippolito G, Palazzo FF, Sebag F, et al. Intraoperative diagnosis and treatment of parathyroid cancer and atypical parathyroid adenoma. Br J Surg. 94: 566–570, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    DeLellis RA. Challenging lesions in the differential diagnosis of endocrine tumours: parathyroid carcinoma. Endocr Pathol 19: 221–225, 2008.CrossRefPubMedGoogle Scholar
  6. 6.
    Rodgers SE, Perrier ND. Parathyroid carcinoma. Curr Opin Oncol 18: 16–22, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Tan MH, Morrison C, Wang P, et al. Loss of parafibromin immunoreactivity is a distinguishing feature of parathyroid carcinoma. Clin Cancer Res 10: 6629–6637, 2004.CrossRefPubMedGoogle Scholar
  8. 8.
    Gill AJ, Clarkson A, Gimm O, et al. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol 30: 1140–1149, 2006.PubMedGoogle Scholar
  9. 9.
    Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32: 676–680, 2002.CrossRefPubMedGoogle Scholar
  10. 10.
    Howell VM, Haven CJ, Kahnoski K, et al. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 40: 657–663, 2003.CrossRefPubMedGoogle Scholar
  11. 11.
    Shattuck TM, Välimäki S, Obara T, et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med 349: 1722–1729, 2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Krebs LJ, Shattuck TM, Arnold A. HRPT2 mutational analysis of typical sporadic parathyroid adenomas. J Clin Endocrinol Metab. 90: 5015–5017, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Cetani F, Pardi E, Borsari S, et al. Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: germline and somatic mutations in familial and sporadic parathyroid tumors. J Clin Endocrinol Metab 89: 5583–5591, 2004.CrossRefPubMedGoogle Scholar
  14. 14.
    Sarquis MS, Silveira LG, Pimenta FJ, et al: Familial hyperparathyroidism: surgical outcome after 30 years of follow-up in three families with germline HRPT2 mutations. Surgery 143: 630–640, 2008.CrossRefPubMedGoogle Scholar
  15. 15.
    Haven CJ, Howell VM, Eilers PH, et al: Gene expression of parathyroid tumors: molecular subclassification and identification of the potential malignant phenotype. Cancer Res 64: 7405–7411, 2004.CrossRefPubMedGoogle Scholar
  16. 16.
    Juhlin C, Höög A, Yakoleva T, et al. Loss of parafibromin expression in a subset of sporadic parathyroid adenomas. Endocr Relat Cancer 13: 509–523, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Juhlin CC, Villablanca A, Sandelin K, et al. Parafibromin immunoreactivity—its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer 14: 501–512, 2007.CrossRefPubMedGoogle Scholar
  18. 18.
    Howell VM, Gill A, Clarkson A, et al. Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab. 94: 434–441, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Juhlin CC, Haglund F, Villablanca A, et al. Loss of expression for the Wnt pathway components adenomatous polyposis coli (APC) and glycogen synthase kinase 3-β (GSK3-β) in parathyroid carcinomas. Int J Oncol 34:481–492, 2009.PubMedGoogle Scholar
  20. 20.
    Miyoshi Y, Ando H, Nagase H, et al. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci USA 89:4452–6, 1992.CrossRefPubMedGoogle Scholar
  21. 21.
    Kraus C, Reina-Sanchez J, Suleková Z, Ballhausen WG: Immunochemical identification of novel high-molecular-weight protein isoforms of the adenomatous polyposis coli (APC) gene. Int J Cancer 65: 383–388, 1996.CrossRefPubMedGoogle Scholar
  22. 22.
    Björklund P, Åkerström G, Westin G: Accumulation of nonphosphorylated β-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab 92: 338–344, 2007.CrossRefPubMedGoogle Scholar
  23. 23.
    Battifora H. Assessment of antigen damage in immunohistochemistry. The vimentin internal control. Am J Clin Pathol. 96: 669–671, 1991.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • C. Christofer Juhlin
    • 1
    • 2
  • Inga-Lena Nilsson
    • 1
  • Kenth Johansson
    • 3
  • Felix Haglund
    • 1
  • Andrea Villablanca
    • 1
  • Anders Höög
    • 2
  • Catharina Larsson
    • 1
  1. 1.Department of Molecular Medicine and Surgery, Karolinska InstitutetKarolinska University Hospital SolnaStockholmSweden
  2. 2.Department of Oncology–Pathology, Karolinska InstitutetKarolinska University Hospital SolnaStockholmSweden
  3. 3.Department of SurgeryVästervik HospitalVästervikSweden

Personalised recommendations