Endocrine Pathology

, Volume 19, Issue 4, pp 226–240

Familial Non-Medullary Thyroid Carcinoma: An Update



Familial thyroid cancer can arise from follicular cells (familial non-medullary thyroid carcinoma (FNMTC)) or from the calcitonin-producing C-cell (familial medullary thyroid carcinoma). This is usually a component of multiple endocrine neoplasias (MEN) IIA or IIB, or as pure familial medullary thyroid carcinoma syndrome. The genetic events in the familial C-cell-derived tumors are known and genotype–phenotype correlations are well established. In contrast, the case for a familial predisposition of non-medullary thyroid carcinoma is only now beginning to emerge. Although the majority of papillary (PTC) and follicular thyroid carcinomas (FTC) are sporadic, familial tumors account for over 5% of cases. The presence of multifocal papillary carcinoma is a common feature of FNMTC. The familial follicular cell-derived tumors or non-medullary thyroid carcinomas encompass a heterogeneous group of diseases, including diverse syndromic-associated tumors and non-syndromic tumors. Based on clinico-pathologic findings, FNMTC is divided into two groups. The first includes familial syndromes characterized by a predominance of non-thyroidal tumors, such as familial adenomatous polyposis (FAP), PTEN hamartoma tumor syndrome (PHTS), Carney complex type 1, and Werner syndrome. The second group includes familial syndromes characterized by a predominance of NMTC, such as pure familial (f) PTC with or without oxyphilia, fPTC with papillary renal cell carcinoma, and fPTC with multinodular goiter. Some characteristic morphologic findings should alert the pathologist of a possible familial cancer syndrome, which may lead to further molecular genetic evaluation.


familial thyroid carcinoma familial papillary thyroid carcinoma familial non-medullary thyroid carcinoma papillary thyroid carcinoma follicular carcinoma medullary thyroid carcinoma familial adenomatous polyposis PTEN hamartoma tumor syndrome Cowden disease familial medullary thyroid carcinoma multiple endocrine neoplasia (MEN) 


  1. 1.
    Robinson D, Orr T. Carcinoma of the thyroid and other diseases of the thyroid in identical twins. Arch Surg 70:923–8, 1955.Google Scholar
  2. 2.
    Nemec J, Soumar J, Zamrazil V, et al. Familial occurrence of differentiated non-medullary thyroid carcinoma. Oncology 32:151–7, 1975.PubMedGoogle Scholar
  3. 3.
    Ries LAG, Melbert D, Krapcho M, et al. 2007 SEER Cancer Statistics Review, 1975–2004. Bethesda, MD: National Cancer Institute. http://seer.cancer.gov/csr/1975_2004/, based on November 2006 SEER data submission, posted to the SEER web site.
  4. 4.
    Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295:2164–7, 2006. doi:10.1001/jama.295.18.2164.PubMedCrossRefGoogle Scholar
  5. 5.
    Leenhardt L, Grosclaude P, Cherie-Challine L. Increased incidence of thyroid carcinoma in France: a true epidemic or thyroid nodule management effects? Report from the French Thyroid Cancer Committee. Thyroid 14:1056–60, 2004. doi:10.1089/thy.2004.14.1056.PubMedCrossRefGoogle Scholar
  6. 6.
    Hundahl SA, Fleming ID, Fremgen AM, et al. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see comments]. Cancer 83:2638–48, 2004. doi:10.1002/(SICI)1097--0142(19981215)83:12<2638::AID-CNCR31>3.0.CO;2--1.CrossRefGoogle Scholar
  7. 7.
    DeLellis RA, Lloyd RV, Heitz PU, et al. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs. Lyon: IARC Press, 2004.Google Scholar
  8. 8.
    Bondeson L, Ljungberg O. Occult papillary thyroid carcinoma in the young and the aged. Cancer 53(8):1790–2, 1984. doi:10.1002/1097--0142(19840415)53:8<1790::AID-CNCR2820530831>3.0.CO;2--9.PubMedCrossRefGoogle Scholar
  9. 9.
    Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer 56(3):531–8, 1985. doi:10.1002/1097--0142(19850801)56:3<531::AID-CNCR2820560321>3.0.CO;2--3.PubMedCrossRefGoogle Scholar
  10. 10.
    Baloch ZW, LiVolsi VA. Microcarcinoma of the thyroid. Adv Anat Pathol 13(2):69–75, 2006. doi:10.1097/01.pap.0000213006.10362.17.PubMedCrossRefGoogle Scholar
  11. 11.
    Baloch ZW, LiVolsi VA. Pathologic diagnosis of papillary thyroid carcinoma: today and tomorrow. Expert Rev Mol Diagn 5(4):573–84, 2005. doi:10.1586/14737159.5.4.573.PubMedCrossRefGoogle Scholar
  12. 12.
    Mears L, Diaz-Cano SJ. Difference between familial and sporadic medullary thyroid carcinomas. Am J Surg Pathol 27(2):266–7, 2003. doi:10.1097/00000478-200302000-00018.PubMedCrossRefGoogle Scholar
  13. 13.
    Skinner MA, Moley JA, Dilley WG, et al. Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A. N Engl J Med 353(11):1105–13, 2005. doi:10.1056/NEJMoa043999.PubMedCrossRefGoogle Scholar
  14. 14.
    Wolfe HJ, DeLellis RA. Familial medullary thyroid carcinoma and C cell hyperplasia. Clin Endocrinol Metab 10(2):351–65, 1981. doi:10.1016/S0300-595X(81)80027-8.PubMedCrossRefGoogle Scholar
  15. 15.
    Perry A, Molberg K, Albores-Saavedra J. Physiologic versus neoplastic C-cell hyperplasia of the thyroid: separation of distinct histologic and biologic entities. Cancer 77(4):750–6, 1996. doi:10.1002/(SICI)1097--0142(19960215)77:4<750::AID-CNCR22>3.0.CO;2-Z.PubMedCrossRefGoogle Scholar
  16. 16.
    LiVolsi VA. C cell hyperplasia/neoplasia. J Clin Endocrinol Metab 82(1):39–41, 1997. doi:10.1210/jc.82.1.39.PubMedCrossRefGoogle Scholar
  17. 17.
    Chiefari E, Russo D, Giuffrida D, et al. Analysis of RET proto-oncogene abnormalities in patients with MEN 2A, MEN 2B, familial or sporadic medullary thyroid carcinoma. J Endocrinol Invest 21:358–64, 1998.PubMedGoogle Scholar
  18. 18.
    Eng C, Clayton D, Schuffenecker I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 276:1575–9, 1996. doi:10.1001/jama.276.19.1575.PubMedCrossRefGoogle Scholar
  19. 19.
    DeLellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol 94(8):662–9, 2006. doi:10.1002/jso.20700.PubMedCrossRefGoogle Scholar
  20. 20.
    Eng C. Seminars in medicine of the Beth Israel Hospital, Boston. The RET proto-oncogene in multiple endocrine neoplasia type 2 and Hirschsprung's disease. N Engl J Med 335(13):943–51, 1996. doi:10.1056/NEJM199609263351307.PubMedCrossRefGoogle Scholar
  21. 21.
    Eng C, Mulligan LM, Healey CS, et al. Heterogeneous mutation of the RET proto-oncogene in subpopulations of medullary thyroid carcinoma. Cancer Res 56:2167–70, 1996.PubMedGoogle Scholar
  22. 22.
    Hofstra RM, Landsvater RM, Ceccherini I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367:375–6, 1994. doi:10.1038/367375a0.PubMedCrossRefGoogle Scholar
  23. 23.
    Komminoth P, Kunz EK, Matias-Guiu X, et al. Analysis of RET proto-oncogenepoint mutations distinguishes heritable from nonheritable medullary thyroid carcinomas. Cancer 76:479–89, 1995. doi:10.1002/1097--0142(19950801)76:3<479::AID-CNCR2820760319>3.0.CO;2-M.PubMedCrossRefGoogle Scholar
  24. 24.
    Matias-Guiu X. RET protooncogene analysis in the diagnosis of medullary thyroid carcinoma and multiple endocrine neoplasia type II. Adv Anat Pathol 5(3):196–201, 1998. doi:10.1097/00125480-199805000-00058.PubMedCrossRefGoogle Scholar
  25. 25.
    Dvorakova S, Vaclavikova E, Sykorova V, et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol Cell Endocrinol 284(1–2):21–7, 2008. doi:10.1016/j.mce.2007.12.016.PubMedCrossRefGoogle Scholar
  26. 26.
    Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 93(3):682–7, 2008. doi:10.1210/jc.2007-1714.PubMedCrossRefGoogle Scholar
  27. 27.
    Carney JA. Familial multiple endocrine neoplasia: the first 100 years. Am J Surg Pathol 29(2):254–74, 2005. doi:10.1097/01.pas.0000147402.95391.41.PubMedCrossRefGoogle Scholar
  28. 28.
    Kebebew E, Ituarte PH, Siperstein AE, et al. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 88:1139–48, 2000. doi:10.1002/(SICI)1097--0142(20000301)88:5<1139::AID-CNCR26>3.0.CO;2-Z.PubMedCrossRefGoogle Scholar
  29. 29.
    Machens A, Niccoli-Sire P, Hoegel J, et al. Early malignant progression of hereditary medullary thyroid cancer. N Engl J Med 349:1517–25, 2003. doi:10.1056/NEJMoa012915.PubMedCrossRefGoogle Scholar
  30. 30.
    Romei C, Elisei R, Pinchera A, et al. Somatic mutations of the ret protooncogene in sporadic medullary thyroid carcinoma are not restricted to exon 16 and are associated with tumor recurrence. J Clin Endocrinol Metab 81:1619–22, 1996. doi:10.1210/jc.81.4.1619.PubMedCrossRefGoogle Scholar
  31. 31.
    Kondo T, Nakazawa T, Murata S, et al. Enhanced B-Raf protein expression is independent of V600E mutant status in thyroid carcinomas. Hum Pathol 38(12):1810–8, 2007. doi:10.1016/j.humpath.2007.04.014.PubMedCrossRefGoogle Scholar
  32. 32.
    Nikiforov MN, Kimura ET, Gandhi M, et al. BRAF mutation in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88(11):5399–404, 2003. doi:10.1210/jc.2003-030838.PubMedCrossRefGoogle Scholar
  33. 33.
    Ciampi R, Nikiforov YE. Alterations of the BRAF gene in thyroid tumors. Endocr Path 16(3):163–72, 2005. doi:10.1385/EP16:3:163.CrossRefGoogle Scholar
  34. 34.
    Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63(7):1454–7, 2003.PubMedGoogle Scholar
  35. 35.
    Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol 13:3–16, 2002. doi:10.1385/EP:13:1:03.PubMedCrossRefGoogle Scholar
  36. 36.
    Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology 148(3):936–41, 2007. doi:10.1210/en.2006-0921.PubMedCrossRefGoogle Scholar
  37. 37.
    Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 8(1):83–95, 2008. doi:10.1586/14737159.8.1.83.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidt J, Derr V, Heinrich M, et al. BRAF in papillary thyroid carcinoma of ovary (Struma Ovarii). Am J Surg Pathol 31:1337–43, 2007. doi:10.1097/PAS.0b013e31802f5404.PubMedCrossRefGoogle Scholar
  39. 39.
    Nikiforova MN, Biddinger PW, Caudill CM, et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26(8):1016–23, 2002. doi:10.1097/00000478-200208000-00006.PubMedCrossRefGoogle Scholar
  40. 40.
    Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88(5):2318–26, 2003. doi:10.1210/jc.2002-021907.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhu Z, Gandhi M, Nikiforova MN, et al. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120(1):71–7, 2003. doi:10.1309/ND8D9LAJTRCTG6QD.PubMedCrossRefGoogle Scholar
  42. 42.
    Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular cell neoplasms. Nat Rev Cancer 6:292–306, 2006. doi:10.1038/nrc1836.PubMedCrossRefGoogle Scholar
  43. 43.
    Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 7(1):35–45, 2007. doi:10.1038/nrc2037.PubMedCrossRefGoogle Scholar
  44. 44.
    Marsh DJ, Coulon V, Lunetta KL, et al. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 7(3):507–15, 1998. doi:10.1093/hmg/7.3.507.PubMedCrossRefGoogle Scholar
  45. 45.
    Eng C. PTEN: one gene, many syndromes. Hum Mutat 22(3):183–98, 2003. doi:10.1002/humu.10257.PubMedCrossRefGoogle Scholar
  46. 46.
    Marsh DJ, Kum JB, Lunetta KL, et al. PTEN mutation spectrum and genotype–phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet 8:1461–72, 1999. doi:10.1093/hmg/8.8.1461.PubMedCrossRefGoogle Scholar
  47. 47.
    Dotto J, Faquin W, Sadow P, et al. Familial non-medullary thyroid carcinoma. Morphologic patterns indicating an inherited trait. Mod Pathol 21(481):106A, 2008.Google Scholar
  48. 48.
    Harach HR, Soubeyran I, Brown A, et al. Thyroid pathologic findings in patients with Cowden disease. Ann Diagnost Pathol 3:331–40, 1999. doi:10.1016/S1092-9134(99)80011-2.CrossRefGoogle Scholar
  49. 49.
    Parisi MA, Dinulos MB, Leppig KA, Sybert VP, Eng C, Hudgins L. The spectrum and evolution of phenotypic findings in PTEN mutation positive cases of Bannayan-Riley-Ruvalcaba syndrome. J Med Genet 38(1):52–8, 2001. doi:10.1136/jmg.38.1.52.PubMedCrossRefGoogle Scholar
  50. 50.
    Zambrano E, Holm I, Glickman J, et al. Abnormal distribution and hyperplasia of thyroid C-cells in PTEN-associated diseases. Endoc Pathol 15(1):55–64, 2004. doi:10.1385/EP:15:1:55.CrossRefGoogle Scholar
  51. 51.
    Harach HR, Lesueur F, Amati P, et al. Histology of familial thyroid tumours linked to a gene mapping to chromosome 19p13.2. J Pathol 189:387–93, 1999. doi:10.1002/(SICI)1096--9896(199911)189:3<387::AID-PATH443>3.0.CO;2-S.PubMedCrossRefGoogle Scholar
  52. 52.
    Lachlan KL, Lucassen AM, Bunyan D, et al. Cowden syndrome and Bannayan Riley Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: results of a clinical study of PTEN mutation carriers. J Med Genet 44(9):579–85, 2007. doi:10.1136/jmg.2007.049981.PubMedCrossRefGoogle Scholar
  53. 53.
    Harach HR, Williams GT, Williams ED. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology 25:549–61, 1994. doi:10.1111/j.1365-2559.1994.tb01374.x.PubMedCrossRefGoogle Scholar
  54. 54.
    Soravia C, Sugg SL, Berk T, et al. Familial adenomatous polyposis-associated thyroid cancer: a clinical pathological, and molecular genetics study. Am J Pathol 154:127–35, 1999.PubMedGoogle Scholar
  55. 55.
    Cameselle-Teijeiro J, Chan JK. Cribriform-morular variant of papillary carcinoma: a distinctive variant representing the sporadic counterpart of familial adenomatous polyposis-associated thyroid carcinoma. Mod Pathol 12(4):400–11, 1999.PubMedGoogle Scholar
  56. 56.
    Herraiz M, Barbesino G, Faquin W, et al. Prevalence of thyroid cancer in familial adenomatous polyposis syndrome and the role of screening ultrasound examinations. Clin Gastroenterol Hepatol 5(3):367–73, 2007. doi:10.1016/j.cgh.2006.10.019.PubMedCrossRefGoogle Scholar
  57. 57.
    Chung DC, Maher MM, Faquin WC. Case records of the Massachusetts General Hospital. Case 37–2006. A 19-year-old woman with thyroid cancer and lower gastrointestinal bleeding. N Engl J Med 355(22):2349–57, 2006. doi:10.1056/NEJMcpc069028.PubMedCrossRefGoogle Scholar
  58. 58.
    Cetta F, Montalto G, Gori M, et al. Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a European cooperative study. J Clin Endocrinol Metab 85:286–92, 2000. doi:10.1210/jc.85.1.286.PubMedCrossRefGoogle Scholar
  59. 59.
    Uchino S, Noguchi S, Yamashita H, et al. Mutational analysis of the APC gene in cribriform-morula variant of papillary thyroid carcinoma. World J Surg 30:775–9, 2006. doi:10.1007/s00268-005-0368-3.PubMedCrossRefGoogle Scholar
  60. 60.
    Xu B, Yoshimoto K, Miyauchi A, et al. Cribriform-morula variant of papillary thyroid carcinoma: a pathological and molecular genetic study with evidence of frequent somatic mutations in exon 3 of the β-catenin gene. J Pathol 199:58–67, 2003. doi:10.1002/path.1225.PubMedCrossRefGoogle Scholar
  61. 61.
    Stratakis CA, Courcoutsakis NA, Abati A, et al. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney Complex). J Clinical Endocrine Metabolism 82:2037–43, 1997. doi:10.1210/jc.82.7.2037.CrossRefGoogle Scholar
  62. 62.
    Stratakis CA, Kirschner LS, Taymans SE, et al. Carney complex, Peutz-Jeghers syndrome, Cowden disease, and Bannayan-Zonana syndrome share cutaneous and endocrine manifestations, but not genetic loci. J Clinical Endocrine Metabolism 83(8):2972–6, 1998. doi:10.1210/jc.83.8.2972.CrossRefGoogle Scholar
  63. 63.
    Goto M, Miller RW, Ishikawa Y, et al. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomark Prevent 5:239–46, 1996.Google Scholar
  64. 64.
    Alsanea O, Clark OH. Familial thyroid cancer. Curr Opin Oncol 13:44–5, 2001. doi:10.1097/00001622-200101000-00009.PubMedCrossRefGoogle Scholar
  65. 65.
    Ishikawa Y, Sugano H, Matsumoto T, et al. Unusual features of thyroid carcinomas in Japanese patients with Werner syndrome and possible genotype-phenotype relations to cell type and race. Cancer 85:1345–52, 1999. doi:10.1002/(SICI)1097--0142(19990315)85:6<1345::AID-CNCR18>3.0.CO;2-#.PubMedCrossRefGoogle Scholar
  66. 66.
    Nehlin JO, Skovgaard GL, Bohr VA. The Werner syndrome. A model for the study of human aging. Ann N Y Acad Sci 908:167–79, 2000.PubMedCrossRefGoogle Scholar
  67. 67.
    Biscolla RP, Ugolini C, Sculli M, et al. Medullary and papillary tumors are frequently associated in the same thyroid gland without evidence of reciprocal influence in their biologic behavior. Thyroid. 14(11):946–52, 2004. doi:10.1089/thy.2004.14.946.PubMedCrossRefGoogle Scholar
  68. 68.
    Giacomelli L, Guerriero G, Falvo L, et al. Simultaneous occurrence of medullary carcinoma and papillary microcarcinoma of thyroid in a patient with MEN 2A syndrome. report of a case. Tumori 93(1):109–11, 2007.PubMedGoogle Scholar
  69. 69.
    Bakhsh A, Kirov G, Gregory GW, et al. A new form of familial multi-nodular goitre with progression to differentiated thyroid cancer. Endocrine-Related Cancer 13:475–83, 2006. doi:10.1677/erc.1.01138.PubMedCrossRefGoogle Scholar
  70. 70.
    Charkes ND. On the prevalence of familial nonmedullary thyroid cancer in multiple affected kindreds. Thyroid 16:181–6, 2006. doi:10.1089/thy.2006.16.181.PubMedCrossRefGoogle Scholar
  71. 71.
    Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab 90:5747–53, 2005. doi:10.1210/jc.2005-0935.PubMedCrossRefGoogle Scholar
  72. 72.
    Leprat F, Bonichon F, Guyot M, et al. Familial non-medullary thyroid carcinoma: pathology review in 27 affected cases from 13 French families. Clin Endocrinol 50:589–94, 1999. doi:10.1046/j.1365-2265.1999.00687.x.CrossRefGoogle Scholar
  73. 73.
    Musholt TJ, Musholt PB, Petrich T, et al. Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J Surg 24:1409–17, 2000. doi:10.1007/s002680010233.PubMedCrossRefGoogle Scholar
  74. 74.
    Ron E, Kleinerman RA, LiVolsi VA, et al. Familial nonmedullary thyroid cancer. Oncology 48:309–11, 1991.PubMedCrossRefGoogle Scholar
  75. 75.
    Sturgeon C, Clark OH. Familial nonmedullary thyroid cancer. Thyroid 15:588–93, 2005. doi:10.1089/thy.2005.15.588.PubMedCrossRefGoogle Scholar
  76. 76.
    Uchino S, Noguchi S, Kawamoto H, et al. Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J Surg 26:897–902, 2002. doi:10.1007/s00268-002-6615-y.PubMedCrossRefGoogle Scholar
  77. 77.
    Alsanea O, Wada N, Ain K, et al. Is familial non-medullary thyroid carcinoma more aggressive than sporadic thyroid cancer? A multicenter series. Surgery 128:1043–50, 2000. doi:10.1067/msy.2000.110848, discussion 1050–1051.PubMedCrossRefGoogle Scholar
  78. 78.
    Grossman RF, Tu SH, Duh QY, et al. Familial nonmedullary thyroid cancer. An emerging entity that warrants aggressive treatment. Arch Surg 130:892–7, 1995, discussion 898–899.PubMedGoogle Scholar
  79. 79.
    Lupoli G, Vitale G, Caraglia M, et al. Familial papillary thyroid microcarcinoma: a new clinical entity. Lancet 353:637–9, 1999. doi:10.1016/S0140-6736(98)08004-0.PubMedCrossRefGoogle Scholar
  80. 80.
    Malchoff CD, Malchoff DM. Familial nonmedullary thyroid carcinoma. Cancer Control 13(2):106–10, 2006.PubMedGoogle Scholar
  81. 81.
    Malchoff CD, Sarfarazi M, Tendler B, et al. Familial papillary thyroid carcinoma is genetically distinct from familial adenomatous polyposis coli. Thyroid 9:247–52, 1999.PubMedGoogle Scholar
  82. 82.
    Takami H, Ozaki O, Ito K. Familial nonmedullary thyroid cancer: an emerging entity that warrants aggressive treatment. Arch Surg 131:676, 1996.PubMedGoogle Scholar
  83. 83.
    Triponez F, Wong M, Sturgeon C, et al. Does familial nonmedullary thyroid cancer adversely affect survival? World J Surg 30:787–93, 2006. doi:10.1007/s00268-005-0398-x.PubMedCrossRefGoogle Scholar
  84. 84.
    Brunaud L, Zarnegar R, Wada N, et al. Chromosomal aberrations by comparative genomic hybridization in thyroid tumors in patients with familial nonmedullary thyroid cancer. Thyroid 13:621–9, 2003. doi:10.1089/105072503322239952.PubMedCrossRefGoogle Scholar
  85. 85.
    Bevan S, Pal T, Greenberg CR, et al. A comprehensive analysis of MNG1, TCO1, fPTC, PTEN, TSHR, and TRKA in familial nonmedullary thyroid cancer: confirmation of linkage to TCO1. J Clin Endocrinol Metab 86:3701–4, 2001. doi:10.1210/jc.86.8.3701.PubMedCrossRefGoogle Scholar
  86. 86.
    Burgess JR, Duffield A, Wilkinson SJ, et al. Two families with an autosomal dominant inheritance pattern for papillary carcinoma of the thyroid. J Clin Endocrinol Metab 82:345–8, 1997. doi:10.1210/jc.82.2.345.PubMedCrossRefGoogle Scholar
  87. 87.
    Lesueur F, Stark M, Tocco T, et al. Genetic heterogeneity in familial nonmedullary thyroid carcinoma: exclusion of linkage to RET, MNG1, and TCO in 56 families. NMTC Consortium. J Clin Endocrinol Metab 84:2157–62, 1999. doi:10.1210/jc.84.6.2157.PubMedCrossRefGoogle Scholar
  88. 88.
    Eng C. The role of PTEN, a phosphatase gene, in inherited and sporadic nonmedullary thyroid tumors. Recent Progr Hormone Res 54:441–52, 1999, discussion, 453.PubMedGoogle Scholar
  89. 89.
    Canzian F, Amati P, Harach HR, et al. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet 63:1743–8, 1998. doi:10.1086/302164.PubMedCrossRefGoogle Scholar
  90. 90.
    Leprat F, Bonichon F, Guyot M, et al. Familial thyroid carcinoma: pathology review in 27 affected cases from 13 French families. Clin Endocrinal 50:589–94, 1999. doi:10.1046/j.1365-2265.1999.00687.x.CrossRefGoogle Scholar
  91. 91.
    Katoh R, Harach HR, Williams ED. Solitary, multiple, and familial oxyphil tumours of the thyroid gland. J Pathol 186:292–9, 1998. doi:10.1002/(SICI)1096--9896(1998110)186:3<292::AID-PATH190>3.0.CO;2-Y.PubMedCrossRefGoogle Scholar
  92. 92.
    McKay JD, Williamson J, Lesueur F, et al. At least three genes account for familial papillary thyroid carcinoma: TCO and MNG1 excluded as susceptibility loci from a large Tasmanian family. Eur J Endocrinol 141:122–5, 1999. doi:10.1530/eje.0.1410122.PubMedCrossRefGoogle Scholar
  93. 93.
    McKay JD, Lesueur F, Jonard L, et al. Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet 69:440–6, 2001. doi:10.1086/321979.PubMedCrossRefGoogle Scholar
  94. 94.
    Malchoff CD, Sarfarazi M, Tendler B, et al. Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J Clin Endocrinol Metab 85:1758–64, 2000. doi:10.1210/jc.85.5.1758.PubMedCrossRefGoogle Scholar
  95. 95.
    Bignell GR, Canzian F, Shayeghi M, et al. Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet 61:1123–30, 1997. doi:10.1086/301610.PubMedCrossRefGoogle Scholar
  96. 96.
    Xing M. The T1799A BRAF mutation is not a germline mutation in familial nonmedullary thyroid cancer. Clin Endocrinol (Oxf) 63:263–6, 2005. doi:10.1111/j.1365-2265.2005.02332.x.CrossRefGoogle Scholar
  97. 97.
    Harach R. Familial nonmedullary thyroid neoplasia. Endocr Pathol 12:97–112, 2001. doi:10.1385/EP:12:2:097.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Department of PathologyBrigham and Women’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations