Endocrine Pathology

, Volume 19, Issue 1, pp 66–73

Transthyretin Amyloid Goiter in a Renal Allograft Recipient

Article

Abstract

Amyloid deposition in the follicular, perifollicular blood vessels, and thyroid stroma can occur in systemic forms of amyloidosis, although diffuse enlargement of the thyroid is generally not present. Marked, widespread enlargement of the thyroid gland with amyloid deposits or amyloid goiter is a rare condition reported in association with primary and secondary amyloidosis but has not been described in association with transthyretin amyloid deposition. Senile transthyretin amyloidosis is primarily associated with amyloid deposits in the heart, while the familial forms of amyloidosis due to transthyretin gene mutations are associated with deposits of amyloid in multiple tissues, classically giving rise to polyneuropathy. In this report, we describe the findings of parathyroid and lymph node amyloid deposits and amyloid goiter with transthyretin reactivity in a recipient of a kidney allograft, reportedly for renal amyloidosis, initially assumed clinically to be due to inflammatory bowel disease-related secondary amyloid deposition. This case underscores the importance of routine immunohistochemical classification of amyloid deposits for accurate diagnosis and to guide clinical management decisions.

Keywords

amyloid goiter thyroid kidney transplant parathyroid transthyretin immunohistochemistry electron microscopy 

References

  1. 1.
    Kennedy JS, Thomson JA, Buchanan WM. Amyloid in the thyroid. Q J Med 43:127–43, 1974.PubMedGoogle Scholar
  2. 2.
    Hamed G, Heffess CS, Shmookler BM, Wenig BM. Amyloid goiter. A clinicopathologic study of 14 cases and review of the literature. Am J Clin Pathol 104:306–12, 1995.PubMedGoogle Scholar
  3. 3.
    Altiparmak MR, Pamuk ON, Pamuk GE, Apaydin S, Ataman R, Serdengecti K. Amyloid goitre in familial Mediterranean fever: report on three patients and review of the literature. Clin Rheumatol 21:497–500, 2002.PubMedCrossRefGoogle Scholar
  4. 4.
    Araki S, Yi S. Pathology of familial amyloidotic polyneuropathy with TTR met 30 in Kumamoto, Japan. Neuropathology 20(Suppl):S47–51, 2000.PubMedCrossRefGoogle Scholar
  5. 5.
    Sakashita N, Ando Y, Obayashi K, Terazaki H, Yamashita T, Takei M, Kinjo M, Takahashi K. Familial amyloidotic polyneuropathy (ATTR Ser50Ile): the first autopsy case report. Virchows Arch 436:345–50, 2000.PubMedCrossRefGoogle Scholar
  6. 6.
    Koike H, Misu K, Sugiura M, Iijima M, Mori K, Yamamoto M, Hattori N, Mukai E, Ando Y, Ikeda S, Sobue G. Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology 63:129–38, 2004.PubMedGoogle Scholar
  7. 7.
    Cornwell GG 3rd, Westermark P, Natvig JB, Murdoch W. Senile cardiac amyloid: evidence that fibrils contain a protein immunologically related to prealbumin. Immunology 44:447–52, 1981.PubMedGoogle Scholar
  8. 8.
    Westermark P, Bergström J, Solomon A, Murphy C, Sletten K. Transthyretin-derived senile systemic amyloidosis: clinicopathologic and structural considerations. Amyloid 10(Suppl 1):48–54, 2003.PubMedGoogle Scholar
  9. 9.
    Ikeda S. Cardiac amyloidosis: heterogenous pathogenic backgrounds. Intern Med 43:1107–14, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Costa PP, Figueira AS, Bravo FR. Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci USA 75:4499–503, 1978.PubMedCrossRefGoogle Scholar
  11. 11.
    Pras M, Prelli F, Franklin EC, Frangione B. Primary structure of an amyloid prealbumin variant in familial polyneuropathy of Jewish origin. Proc Natl Acad Sci USA 80:539–42, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Saraiva MJ. Transthyretin mutations in health and disease. Hum Mutat 5:191–6, 1995.PubMedCrossRefGoogle Scholar
  13. 13.
    Ando Y, Nakamura M, Araki S. Transthyretin-related familial amyloidotic polyneuropathy. Arch Neurol 62:1057–62, 2005.PubMedCrossRefGoogle Scholar
  14. 14.
    Takahashi K, Yi S, Kimura Y, Araki S. Familial amyloidotic polyneuropathy type 1 in Kumamoto, Japan: a clinicopathologic, histochemical, immunohistochemical, and ultrastructural study. Hum Pathol 22:519–27, 1991.PubMedCrossRefGoogle Scholar
  15. 15.
    Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 36:411–32, 2007.PubMedCrossRefGoogle Scholar
  16. 16.
    Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 349:583–96, 2003.PubMedCrossRefGoogle Scholar
  17. 17.
    Kebbel A, Rocken C. Immunohistochemical classification of amyloid in surgical pathology revisited. Am J Surg Pathol 30:673–83, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Purkey HE, Palaninathan SK, Kent KC, Smith C, Safe SH, Sacchettini JC, Kelly JW. Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Chem Biol 11:1719–28, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Green NS, Foss TR, Kelly JW. Genistein, a natural product from soy, is a potent inhibitor of transthyretin amyloidosis. Proc Natl Acad Sci USA 102:14545–50, 2005.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson SM, Petrassi HM, Palaninathan SK, Mohamedmohaideen NN, Purkey HE, Nichols C, Chiang KP, Walkup T, Sacchettini JC, Sharpless KB, Kelly JW. Bisaryloxime ethers as potent inhibitors of transthyretin amyloid fibril formation. J Med Chem 48:1576–87, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Sato T, Ando Y, Susuki S, Mikami F, Ikemizu S, Nakamura M, Suhr O, Anraku M, Kai T, Suico MA, Shuto T, Mizuguchi M, Yamagata Y, Kai H. Chromium(III) ion and thyroxine cooperate to stabilize the transthyretin tetramer and suppress in vitro amyloid fibril formation. FEBS Lett 580:491–6, 2006.PubMedCrossRefGoogle Scholar
  22. 22.
    Tagoe CE, Reixach N, Friske L, Mustra D, French D, Gallo G, Buxbaum JN. In vivo stabilization of mutant human transthyretin in transgenic mice. Amyloid 14:227–36, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Wüthrich RP, Martin D, Bilezikian JP. The role of calcimimetics in the treatment of hyperparathyroidism. Eur J Clin Invest 37:915–22, 2007.PubMedCrossRefGoogle Scholar
  24. 24.
    Goldsmith JD, Lai ML, Daniele GM, Tomaszewski JE, LiVolsi VA. Amyloid goiter: report of two cases and review of the literature. Endocr Pract 6:318–23, 2000.PubMedGoogle Scholar
  25. 25.
    Kimura H, Yamashita S, Ashizawa K, Yokoyama N, Nagataki S. Thyroid dysfunction in patients with amyloid goitre. Clin Endocrinol (Oxf) 46:769–74, 1997.CrossRefGoogle Scholar
  26. 26.
    Villamil CF, Massimi G, D’Avella J, Cole SR. Amyloid goiter with parathyroid involvement: a case report and review of the literature. Arch Pathol Lab Med 124:281–3, 2000.PubMedGoogle Scholar
  27. 27.
    Rocken C, Roessner A. An evaluation of antigen retrieval procedures for immunoelectron microscopic classification of amyloid deposits. J Histochem Cytochem 47:1385–94, 1999.PubMedGoogle Scholar
  28. 28.
    Ozdemir BH, Uyar P, Ozdemir FN. Diagnosing amyloid goitre with thyroid aspiration biopsy. Cytopathology 17:262–6, 2006.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Department of PathologyHarvard Medical School/Brigham and Women’s HospitalBostonUSA
  2. 2.Department of PathologyBrigham and Women’s Hospital/Harvard Medical SchoolBostonUSA

Personalised recommendations