Porthole and Stormcloud: Tools for Visualisation of Spatiotemporal M/EEG Statistics

  • Jeremy A TaylorEmail author
  • Marta I Garrido
Software Original Article


Electro- and magneto-encephalography are functional neuroimaging modalities characterised by their ability to quantify dynamic spatiotemporal activity within the brain. However, the visualisation techniques used to illustrate these effects are currently limited to single- or multi-channel time series plots, topographic scalp maps and orthographic cross-sections of the spatiotemporal data structure. Whilst these methods each have their own strength and weaknesses, they are only able to show a subset of the data and are suboptimal at articulating one or both of the space-time components.

Here, we propose Porthole and Stormcloud, a set of data visualisation tools which can automatically generate context appropriate graphics for both print and screen with the following graphical capabilities:
  • Animated two-dimensional scalp maps with dynamic timeline annotation and optional user interaction;

  • Three-dimensional construction of discrete clusters within sparse spatiotemporal volumes, rendered with ‘cloud-like’ appearance and augmented by cross-sectional scalp maps indicating local maxima.

These publicly available tools were designed specifically for visualisation of M/EEG spatiotemporal statistical parametric maps, however, we also demonstrate alternate use cases of posterior probability maps and weight maps produced by machine learning classifiers. In principle, the methods employed here are transferrable to visualisation of any spatiotemporal image.


EEG MEG Space-time cube Visualisation Statistical parametric mapping Machine learning 



This work was supported by the Australian Research Council Centre of Excellence for Integrative Brain Function (ARC Centre Grant CE140100007), a University of Queensland Fellowship (2016000071) and a Foundation Research Excellence Award (2016001844) to MIG. We would like to thank Tyler Hobson for discussions on computer graphics methods, Clare Harris for providing data, as well as Veronika Halász, Kit Melissa Larsen, Ilvana Dzafic, Jessica McFadyen and Chase Sherwell for providing feedback on the functionality of earlier versions of the toolbox.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no competing financial interests.

Supplementary material (1.5 mb)
ESM 1 (MOV 1554 kb) (1.9 mb)
ESM 2 (MOV 1928 kb) (1.7 mb)
ESM 3 (MOV 1718 kb) (2.4 mb)
ESM 4 (MOV 2502 kb)


  1. Bach, B., Dragicevic, P., Archambault, D., Hurter, C., & Carpendale, S. (2016). A descriptive framework for temporal data visualizations based on generalized space-time cubes. Computer Graphics Forum, 36(6), 36–61. Scholar
  2. Brett, M., Penny, W. D., & Kiebel, S. J. (2004). Introduction to random field theory. In R. S. J. Frackowiak, K. J. Friston, C. D. Frith, R. J. Dolan, C. J. Price, S. Zeki, et al. (Eds.), Human brain function (2nd ed., pp. 867–879). Burlington: Academic Press.Google Scholar
  3. Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167. Scholar
  4. Christen, M., Vitacco, D. A., Huber, L., Harboe, J., Fabrikant, S. I., & Brugger, P. (2013). Colorful brains: 14 years of display practice in functional neuroimaging. NeuroImage, 73, 30–39. Scholar
  5. Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., & Penny, W. D. (2011). Statistical parametric mapping: The analysis of functional brain images. London: Academic Press.Google Scholar
  6. Fuchs, R., & Hauser, H. (2009). Visualization of multi-Variate scientific data. Computer Graphics Forum, 28(6), 1670–1690. Scholar
  7. Garrido, M. I., Teng, C. L. J., Taylor, J. A., Rowe, E. G., & Mattingley, J. B. (2016). Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand. NPJ Science of Learning, 1, 16006. Scholar
  8. Garrido, M. I., Rowe, E. G., Halász, V., & Mattingley, J. B. (2018). Bayesian mapping reveals that attention boosts neural responses to predicted and unpredicted stimuli. Cerebral Cortex, 28(5), 1771–1782. Scholar
  9. Hägerstraand, T. (1970). What about people in regional science? Papers in Regional Science, 24(1), 7–24. Scholar
  10. Harris, C. D., Rowe, E. G., Randeniya, R., & Garrido, M. I. (2018). Bayesian model selection maps for group studies using M/EEG data. Frontiers in Neuroscience, 12, 598. Scholar
  11. Hastie, T., Friedman, J., & Tibshirani, R. (2001). The elements of statistical learning: Data mining, inference and prediction (1st ed.). New York: Springer.CrossRefGoogle Scholar
  12. Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96–110. Scholar
  13. Koles, Z. J., & Paranjape, R. B. (1988). Topographic mapping of the EEG: An examination of accuracy and precision. Brain Topography, 1(2), 87–95. Scholar
  14. Kristensson, P. O., Dahlback, N., Anundi, D., Bjornstad, M., Gillberg, H., Haraldsson, J., et al. (2009). An evaluation of space time cube representation of spatiotemporal patterns. IEEE Transactions on Visualization and Computer Graphics, 15(4), 696–702. Scholar
  15. Larsen, K. M., Mørup, M., Birknow, M. R., Fischer, E., Hulme, O., Vangkilde, A., Schmock, H., Baaré, W. F. C., Didriksen, M., Olsen, L., Werge, T., Siebner, H. R., & Garrido, M. I. (2018). Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome. Schizophrenia Research, 197, 328–336. Scholar
  16. Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., Barnes, G., Oostenveld, R., Daunizeau, J., Flandin, G., Penny, W., & Friston, K. (2011). EEG and MEG data analysis in SPM8. Computational Intelligence and Neuroscience, 2011, 852961. Scholar
  17. Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13(2), 201–233. Scholar
  18. Olah, C., & Carter, S. (2017). Research debt. Distill.
  19. Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713–719. Scholar
  20. Poline, J., Kherif, F., Pallier, C., & Penny, W. D. (2007). Contrasts and classical inference. In W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, & T. E. Nichols (Eds.), Statistical parametric mapping: The analysis of functional brain images (pp. 126–139). Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  21. Rosa, M. J., Bestmann, S., Harrison, L., & Penny, W. (2010). Bayesian model selection maps for group studies. NeuroImage, 49(1–3), 217–224. Scholar
  22. Schölkopf, B., & Smola, A. J. (2000). Learning with kernels. Cambridge, MA: The MIT Press.Google Scholar
  23. Schrouff, J., & Mourão-Miranda, J. (2018, June 12–14). Interpreting weight maps in terms of cognitive or clinical neuroscience: Nonsense? In 2018 international workshop on pattern recognition in neuroimaging (PRNI) (pp. 1–4).
  24. Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., Phillips, C., Richiardi, J., & Mourão-Miranda, J. (2013). PRoNTo: Pattern recognition for neuroimaging toolbox. Neuroinformatics, 11(3), 319–337. Scholar
  25. Timmermann, C., Spriggs, M. J., Kaelen, M., Leech, R., Nutt, D. J., Moran, R. J., et al. (2017). LSD modulates effective connectivity and neural adaptation mechanisms in an auditory oddball paradigm. Neuropharmacology. Scholar
  26. Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire: Graphics Press.Google Scholar
  27. Worsley, K. J. (1995). Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. The Annals of Statistics, 23(2), 640–669.CrossRefGoogle Scholar
  28. Worsley, K. J. (1996). The geometry of random images. Chance, 9(1), 27–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
  2. 2.Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
  3. 3.Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
  4. 4.School of Information Technology and Electrical EngineeringUniversity of QueenslandBrisbaneAustralia
  5. 5.School of Mathematics and PhysicsUniversity of QueenslandBrisbaneAustralia
  6. 6.Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneAustralia

Personalised recommendations