Advertisement

MEAnalyzer – a Spike Train Analysis Tool for Multi Electrode Arrays

  • Raha M. DastgheybEmail author
  • Seung-Wan Yoo
  • Norman J. Haughey
Software Original Article
  • 30 Downloads

Abstract

Despite a multitude of commercially available multi-electrode array (MEA) systems that are each capable of rapid data acquisition from cultured neurons or slice cultures, there is a general lack of available analysis tools. These analysis gaps restrict the efficient extraction of meaningful physiological features from data sets, and limit interpretation of how experimental manipulations modify neural network activity. Here, we present the development of a user-friendly, publicly-available software called MEAnalyzer. This software contains several spike train analysis methods including relevant statistical calculations, periodicity analysis, functional connectivity analysis, and advanced data visualizations in a user-friendly graphical user interface that requires no coding from the user. Widespread availability of this user friendly and mathematically advanced program will stimulate and enhance the use of MEA technologies.

Keywords

Neuron Electrophysiology MEA Multi-electrodel array Functional connectivity Spike trains Spike analysis Burst analysis Data visualization 

Notes

Supplementary material

12021_2019_9431_MOESM1_ESM.pdf (183 kb)
ESM 1 (PDF 182 kb)
12021_2019_9431_MOESM2_ESM.avi (3.5 mb)
ESM 2 (AVI 3580 kb)
12021_2019_9431_MOESM3_ESM.avi (3.6 mb)
ESM 3 (AVI 3639 kb)
12021_2019_9431_MOESM4_ESM.avi (14 mb)
ESM 4 (AVI 14294 kb)
12021_2019_9431_MOESM5_ESM.avi (19.5 mb)
ESM 5 (AVI 19936 kb)
12021_2019_9431_MOESM6_ESM.h5 (5.1 mb)
ESM 6 (H5 5232 kb)
12021_2019_9431_MOESM7_ESM.h5 (34.7 mb)
ESM 7 (H5 35547 kb)
12021_2019_9431_MOESM8_ESM.exe (25 mb)
ESM 8 (EXE 25638 kb)
12021_2019_9431_MOESM9_ESM.pdf (1.7 mb)
ESM 9 (PDF 1702 kb)

References

  1. Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S., & Mitra, P. P. (2010). Chronux: A platform for analyzing neural signals. Journal of Neuroscience Methods, 192(1), 146–151.  https://doi.org/10.1016/j.jneumeth.2010.06.020.Google Scholar
  2. Bologna, L. L., Pasquale, V., Garofalo, M., Gandolfo, M., Baljon, P. L., Maccione, A., Martinoia, S., & Chiappalone, M. (2010). Investigating neuronal activity by SPYCODE multi-channel data analyzer. Neural Networks, 23(6), 685–697.  https://doi.org/10.1016/j.neunet.2010.05.002.Google Scholar
  3. Bongard, M., Micol, D., & Fernandez, E. (2014). NEV2lkit: A new open source tool for handling neuronal event files from multi-electrode recordings. International Journal of Neural Systems, 24(4), 1450009.  https://doi.org/10.1142/S0129065714500099.Google Scholar
  4. Bower, J. M., & Beeman, D. (2007). Constructing realistic neural simulations with GENESIS. Methods in Molecular Biology, 401, 103–125.  https://doi.org/10.1007/978-1-59745-520-6_7.Google Scholar
  5. Bradley, J. A., Luithardt, H. H., Metea, M. R., & Strock, C. J. (2018). In vitro screening for seizure liability using microelectrode Array technology. Toxicological Sciences, 163, 240–253.  https://doi.org/10.1093/toxsci/kfy029.Google Scholar
  6. Brodlie, K. W., Carpenter, L. A., Earnshaw, R. A., Gallop, J. R., Hubbold, R. J., Mumford, A. M., et al. (2012). Scientific visualization: Techniques and applications. Springer Science & Business Media.Google Scholar
  7. Cajigas, I., Malik, W. Q., & Brown, E. N. (2012). nSTAT: Open-source neural spike train analysis toolbox for Matlab. Journal of Neuroscience Methods, 211(2), 245–264.  https://doi.org/10.1016/j.jneumeth.2012.08.009.Google Scholar
  8. Canepari, M., Bove, M., Maeda, E., Cappello, M., & Kawana, A. (1997). Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biological Cybernetics, 77(2), 153–162.  https://doi.org/10.1007/s004220050376.Google Scholar
  9. Chaudhuri, A. D., Dastgheyb, R. M., Yoo, S. W., Trout, A., Talbot, C. C., Jr., Hao, H., et al. (2018). TNFalpha and IL-1beta modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons. Cell Death & Disease, 9(3), 363.  https://doi.org/10.1038/s41419-018-0369-4.Google Scholar
  10. Chiappalone, M., Bove, M., Vato, A., Tedesco, M., & Martinoia, S. (2006). Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Research, 1093, 41–53.  https://doi.org/10.1016/j.brainres.2006.03.049.Google Scholar
  11. Cotterill, E., Charlesworth, P., Thomas, C. W., Paulsen, O., & Eglen, S. J. (2016). A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks. Journal of Neurophysiology, 116(2), 306–321.  https://doi.org/10.1152/jn.00093.2016.Google Scholar
  12. de Korte, T., Guilbot, S., Printemps, R., Hautefeuille, L., Le Grand, M., Wilbers, R., et al. (2017). Assessment of compound effects on electrophysiology of hiPSC-derived ventricular cardiomyocytes using patch clamp and multielectrode Array (MEA) analysis. Journal of Pharmacological and Toxicological Methods, 88, 196–196.  https://doi.org/10.1016/j.vascn.2017.09.092.Google Scholar
  13. Delorme, A., & Thorpe, S. J. (2003). SpikeNET: An event-driven simulation package for modelling large networks of spiking neurons. Network, 14(4), 613–627.Google Scholar
  14. Earnshaw, R., & Wiseman, N. (2012). An introductory guide to scientific visualization. Springer Science & Business Media.Google Scholar
  15. Egert, U., Knott, T., Schwarz, C., Nawrot, M., Brandt, A., Rotter, S., & Diesmann, M. (2002). MEA-tools: An open source toolbox for the analysis of multi-electrode data with MATLAB. Journal of Neuroscience Methods, 117(1), 33–42.  https://doi.org/10.1016/S0165-0270(02)00045-6.Google Scholar
  16. Georgiadis, V., Stephanou, A., Townsend, P. A., & Jackson, T. R. (2015). MultiElec: A MATLAB based application for MEA data analysis. PLoS One, 10(6), e0129389.  https://doi.org/10.1371/journal.pone.0129389.Google Scholar
  17. Gerstein, G. L. (2000). Cross-correlation measures of unresolved multi-neuron recordings. Journal of Neuroscience Methods, 100(1–2), 41–51.Google Scholar
  18. Goldberg, D. H., Victor, J. D., Gardner, E. P., & Gardner, D. (2009). Spike train analysis toolkit: Enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 7(3), 165–178.  https://doi.org/10.1007/s12021-009-9049-y.Google Scholar
  19. Gross, G. W., & Schwalm, F. U. (1994). A closed flow chamber for long-term multichannel recording and optical monitoring. Journal of Neuroscience Methods, 52(1), 73–85.  https://doi.org/10.1016/0165-0270(94)90059-0.Google Scholar
  20. Harris, K. D., Quiroga, R. Q., Freeman, J., & Smith, S. L. (2016). Improving data quality in neuronal population recordings. Nature Neuroscience, 19(9), 1165–1174.  https://doi.org/10.1038/nn.4365.Google Scholar
  21. Hazan, L., Zugaro, M., & Buzsaki, G. (2006). Klusters, NeuroScope, NDManager: A free software suite for neurophysiological data processing and visualization. Journal of Neuroscience Methods, 155(2), 207–216.  https://doi.org/10.1016/j.jneumeth.2006.01.017.Google Scholar
  22. Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9(6), 1179–1209.Google Scholar
  23. Hodgkin, A. L., & Huxley, A. F. (1945). Resting and action potentials in single nerve fibres. The Journal of Physiology, 104(2), 176–195.Google Scholar
  24. Huang, Y., Li, X., Li, Y., Xu, Q., Lu, Q., & Liu, Q. (2008). An integrative analysis platform for multiple neural spike train data. Journal of Neuroscience Methods, 172(2), 303–311.  https://doi.org/10.1016/j.jneumeth.2008.04.026.Google Scholar
  25. Jefferys, J. G. R., & Haas, H. L. (1982). Synchronized bursting of Ca1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature, 300(5891), 448–450.  https://doi.org/10.1038/300448a0.Google Scholar
  26. Johnson, D. H. (1978). The relationship of post-stimulus time and interval histograms to the timing characteristics of spike trains. Biophysical Journal, 22(3), 413–430.  https://doi.org/10.1016/S0006-3495(78)85496-4.Google Scholar
  27. Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P., & Kawana, A. (1996). Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience Letters, 206(2–3), 109–112.Google Scholar
  28. Knox, C. K. (1981). Detection of neuronal interactions using correlation-analysis. Trends in Neurosciences, 4(9), 222–225.  https://doi.org/10.1016/0166-2236(81)90070-9.Google Scholar
  29. Kwon, K. Y., Eldawlatly, S., & Oweiss, K. (2012). NeuroQuest: A comprehensive analysis tool for extracellular neural ensemble recordings. Journal of Neuroscience Methods, 204(1), 189–201.  https://doi.org/10.1016/j.jneumeth.2011.10.027.Google Scholar
  30. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19).  https://doi.org/10.1103/PhysRevLett.87.198701.
  31. Lidierth, M. (2009). sigTOOL: A MATLAB-based environment for sharing laboratory-developed software to analyze biological signals. Journal of Neuroscience Methods, 178(1), 188–196.  https://doi.org/10.1016/j.jneumeth.2008.11.004.Google Scholar
  32. Llinas, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons - insights into central nervous-system function. Science, 242(4886), 1654–1664.  https://doi.org/10.1126/science.3059497.Google Scholar
  33. Maeda, E., Robinson, H. P. C., & Kawana, A. (1995). The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical-neurons. The Journal of Neuroscience, 15(10), 6834–6845.Google Scholar
  34. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., & Vassanelli, S. (2012). SigMate: A Matlab-based automated tool for extracellular neuronal signal processing and analysis. Journal of Neuroscience Methods, 207(1), 97–112.  https://doi.org/10.1016/j.jneumeth.2012.03.009.Google Scholar
  35. Mahmud, M., Pulizzi, R., Vasilaki, E., & Giugliano, M. (2014). QSpike tools: A generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays. Frontiers in Neuroinformatics, 8, 26.  https://doi.org/10.3389/fninf.2014.00026.Google Scholar
  36. Meier, R., Egert, U., Aertsen, A., & Nawrot, M. P. (2008). FIND--a unified framework for neural data analysis. Neural Networks, 21(8), 1085–1093.  https://doi.org/10.1016/j.neunet.2008.06.019.Google Scholar
  37. Micallef, J. (1987). Encapsulation, reusability and extensibility in object-oriented programming languages.Google Scholar
  38. Miller, S. J., Philips, T., Kim, N., Dastgheyb, R., Chen, Z., Hsieh, Y. C., Daigle, J. G., Datta, M., Chew, J., Vidensky, S., Pham, J. T., Hughes, E. G., Robinson, M. B., Sattler, R., Tomer, R., Suk, J. S., Bergles, D. E., Haughey, N., Pletnikov, M., Hanes, J., & Rothstein, J. D. (2019). Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin. Nature Neuroscience, 22, 741–752.  https://doi.org/10.1038/s41593-019-0366-7.Google Scholar
  39. Novak, J. L., & Wheeler, B. C. (1988). Multisite hippocampal slice recording and stimulation using a 32 element microelectrode Array. Journal of Neuroscience Methods, 23(2), 149–159.  https://doi.org/10.1016/0165-0270(88)90187-2.Google Scholar
  40. Novellino, A., Chiappalone, M., Maccione, A., & Martinoia, S. (2009). Neural signal manager: A collection of classical and innovative tools for multi-channel spike train analysis. International Journal of Adaptive Control and Signal Processing, 23(11), 999–1013.  https://doi.org/10.1002/acs.1076.Google Scholar
  41. Pastore, V. P., Poli, D., Godjoski, A., Martinoia, S., & Massobrio, P. (2016). ToolConnect: A functional connectivity toolbox for in vitro networks. Frontiers in Neuroinformatics, 10, 13.  https://doi.org/10.3389/fninf.2016.00013.Google Scholar
  42. Pine, J. (1980). Recording action-potentials from cultured neurons with extracellular micro-circuit electrodes. Journal of Neuroscience Methods, 2(1), 19–31.  https://doi.org/10.1016/0165-0270(80)90042-4.Google Scholar
  43. Poli, D., Pastore, V. P., & Massobrio, P. (2015). Functional connectivity in in vitro neuronal assemblies. Front Neural Circuits, 9, 57.  https://doi.org/10.3389/fncir.2015.00057.Google Scholar
  44. Potter, S. M., & DeMarse, T. B. (2001). A new approach to neural cell culture for long-term studies. Journal of Neuroscience Methods, 110(1–2), 17–24.Google Scholar
  45. Salinas, E., & Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews. Neuroscience, 2(8), 539–550.  https://doi.org/10.1038/35086012.Google Scholar
  46. Schofield, P. N., Bubela, T., Weaver, T., Brown, S. D., Hancock, J. M., Einhorn, D., et al. (2009). Post-publication sharing of data and tools. Nature, 461(7261), 171–173.  https://doi.org/10.1038/461171a.Google Scholar
  47. Snyder, D. L. (1991). Random point processes in time and space. In M. I. Miller, & D. L. Snyder (Eds.), (2nd ed. / ed.). In New York :: Springer-Verlag.Google Scholar
  48. Somerville, J., Stuart, L., Sernagor, E., & Borisyuk, R. (2010). iRaster: A novel information visualization tool to explore spatiotemporal patterns in multiple spike trains. Journal of Neuroscience Methods, 194(1), 158–171.  https://doi.org/10.1016/j.jneumeth.2010.09.009.Google Scholar
  49. Spira, M. E., & Hai, A. (2013). Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotechnology, 8(2), 83–94.  https://doi.org/10.1038/nnano.2012.265.Google Scholar
  50. Teeters, J. L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., Asari, H., Peron, S., Li, N., Peyrache, A., Denisov, G., Siegle, J. H., Olsen, S. R., Martin, C., Chun, M., Tripathy, S., Blanche, T. J., Harris, K., Buzsáki, G., Koch, C., Meister, M., Svoboda, K., & Sommer, F. T. (2015). Neurodata without Borders: Creating a common data format for neurophysiology. Neuron, 88(4), 629–634.  https://doi.org/10.1016/j.neuron.2015.10.025.Google Scholar
  51. Thomas, C. A., Jr., Springer, P. A., Loeb, G. E., Berwald-Netter, Y., & Okun, L. M. (1972). A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Experimental Cell Research, 74(1), 61–66.Google Scholar
  52. Vato, A., Bonzano, L., Chiappalone, M., Cicero, S., Morabito, F., Novellino, A., & Stillo, G. (2004). Spike manager: A new tool for spontaneous an evoked neuronal networks activity characterization. Neurocomputing, 58, 1153–1161.  https://doi.org/10.1016/j.neucom.2004.01.180.Google Scholar
  53. Wagenaar, D., DeMarse, T. B., & Potter, S. M. (2005). MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. 2005 2nd Internatinoal Ieee/Embs Conference on Neural. Engineering, 518–521.Google Scholar
  54. Welch, P. D. (1967). Use of Fast Fourier Transform for Estimation of Power Spectra - a Method Based on Time Averaging over Short Modified Periodograms. Ieee Transactions on Audio and Electroacoustics, Au15(2), 70-&,  https://doi.org/10.1109/Tau.1967.1161901.
  55. Wiegner, A. W., & Wierzbicka, M. M. (1987). A method for assessing significance of peaks in cross-correlation histograms. Journal of Neuroscience Methods, 22(2), 125–131.Google Scholar
  56. Wiener, N. (1949). Extrapolation, interpolation, and smoothing of stationary time series, with engineering applications. Cambridge: Technology Press of the Massachusetts Institute of Technology.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of PsychiatryThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations