Advertisement

Cellular Automata Tractography: Fast Geodesic Diffusion MR Tractography and Connectivity Based Segmentation on the GPU

  • Andac HamamciEmail author
Original Article

Abstract

Geodesic based tractography on diffusion magnetic resonance data is a method to devise long distance connectivities among the brain regions. In this study, cellular automata technique is applied to the geodesic tractography problem and the algorithm is implemented on a graphics processing unit. Cellular automaton based method is preferable to current techniques due to its parallel nature and ability to solve the connectivity based segmentation problem with the same computational complexity, which has important applications in neuroimaging. An application to prior-less tracking and connectivity based segmentation of corpus callosum fibers is presented as an example. A geodesic tractography based corpus callosum atlas is provided, which reveals high projections to the cortical language areas. The developed method not only allows fast computation especially for segmentation but also provides a powerful and intuitive framework, suitable to derive new algorithms to perform connectivity calculations and allowing novel applications.

Keywords

Diffusion MRI Geodesic tractography Connectivity Cellular automata Connectivity based segmentation Corpus callosum parcellation Graphics processing unit Shortest-paths 

Notes

Acknowledgements

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. The DTI atlas of corpus callosum was available online, provided by Natbrainlab (http://www.natbrainlab.com). The author thanks Umut Sarı for editing the text, Zeynep Fırat for helpful comments and Microsoft company for providing access to the Azure infrastructure.

Compliance with Ethical Standards

Conflict of interests

The author declares no conflict of interest.

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41.Google Scholar
  2. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A. (2000). In vivo fiber tractography using dt-mri data. Magnetic Resonance in Medicine, 44(4), 625–632.Google Scholar
  3. Bastiani, M., Cottaar, M., Dikranian, K., Ghosh, A., Zhang, H., Alexander, D.C., Behrens, T.E., Jbabdi, S., Sotiropoulos, S.N. (2017). Improved tractography using asymmetric fibre orientation distributions. NeuroImage, 158, 205–218.Google Scholar
  4. Behrens, T.E., Johansen-Berg, H., Woolrich, M., Smith, S., Wheeler-Kingshott, C., Boulby, P., Barker, G., Sillery, E., Sheehan, K., Ciccarelli, O., et al. (2003a). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750.Google Scholar
  5. Behrens, T.E., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M. (2003b). Characterization and propagation of uncertainty in diffusion-weighted mr imaging. Magnetic Resonance in Medicine, 50(5), 1077–1088.Google Scholar
  6. Booth, B.G., & Hamarneh, G. (2011). Exact integration of diffusion orientation distribution functions for graph-based diffusion mri analysis. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 935–938). IEEE.Google Scholar
  7. Busato, F., & Bombieri, N. (2016). An efficient implementation of the bellman-ford algorithm for kepler gpu architectures. IEEE Transactions on Parallel and Distributed Systems, 27, 2222–2233.Google Scholar
  8. Calamante, F., & Chi, J.G. (2014). 7.0 Tesla MRI Brain White Matter Atlas. Berlin: Springer.Google Scholar
  9. Catani, M., & De Schotten, M.T. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44(8), 1105–1132.Google Scholar
  10. Catani, M., Howard, R.J., Pajevic, S., Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17(1), 77–94.Google Scholar
  11. Christiaens, D., Reisert, M., Dhollander, T., Sunaert, S., Suetens, P., Maes, F. (2015). Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model. NeuroImage, 123, 89–101.Google Scholar
  12. Cieslak, M., Brennan, T., Meiring, W., Volz, L.J., Greene, C., Asturias, A., Suri, S., Grafton, S.T. (2018). Analytic tractography: a closed-form solution for estimating local white matter connectivity with diffusion mri. NeuroImage, 169, 473–484.Google Scholar
  13. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences, 96(18), 10422–10427.Google Scholar
  14. Cote, M.A., Girard, G, Bore, A., Garyfallidis, E. , Houde, J.C., Descoteaux, M. (2013). Tractometer: Towards validation of tractography pipelines. Medical Image Analysis, 17(7), 844–857. special Issue on the 2012 Conference on Medical Image Computing and Computer Assisted Intervention.Google Scholar
  15. Di Paola, M., Spalletta, G., Caltagirone, C. (2010). In vivo structural neuroanatomy of corpus callosum in alzheimer’s disease and mild cognitive impairment using different mri techniques: a review. Journal of Alzheimer’s disease, 20(1), 67–95.Google Scholar
  16. Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861–874. rOC Analysis in Pattern Recognition.Google Scholar
  17. Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A., Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.F., Poupon, C. (2011). Quantitative evaluation of 10 tractography algorithms on a realistic diffusion mr phantom. NeuroImage, 56(1), 220–234.Google Scholar
  18. Fonov, V., Evans, A., McKinstry, R., Almli, C., Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102. organization for Human Brain Mapping 2009 Annual Meeting.Google Scholar
  19. Fuster, A., Dela Haije, T., Tristán-Vega, A, Plantinga, B., Westin, C.F., Florack, L. (2016). Adjugate diffusion tensors for geodesic tractography in white matter. Journal of Mathematical Imaging and Vision, 54(1), 1–14.Google Scholar
  20. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I. (2014). Dipy, a library for the analysis of diffusion mri data. Frontiers in Neuroinformatics, 8, 8.Google Scholar
  21. Gorgolewski, K., Burns, C., Madison, C., Clark, D., Halchenko, Y., Waskom, M., Ghosh, S. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics, 5, 13.Google Scholar
  22. Hae-Jeong, P., Jin, K.J., Seung-Koo, L., Ho, S.J., Jiwon, C., Ik, K.D., Doo, L.J. (2008). Corpus callosal connection mapping using cortical gray matter parcellation and dt-mri. Human Brain Mapping, 29 (5), 503–516.Google Scholar
  23. Hagberg, A.A., Schult, D.A., Swart, P.J. (2008). Exploring network structure, dynamics, and function using networkx. In Varoquaux, G., Vaught, T., Millman, J. (Eds.) Proceedings of the 7th Python in Science Conference, Pasadena, CA USA (pp. 11–15).Google Scholar
  24. Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G. (2012). Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Transactions on Medical Imaging, 31(3), 790–804.Google Scholar
  25. Harms, R., Fritz, F., Tobisch, A., Goebel, R., Roebroeck, A. (2017). Robust and fast nonlinear optimization of diffusion mri microstructure models. NeuroImage, 155, 82–96.Google Scholar
  26. Hernandez, M., Guerrero, G.D., Cecilia, J.M., Garcia, J.M., Inuggi, A., Jbabdi, S., Behrens, T.E.J., Sotiropoulos, S.N. (2013). Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using gpus. PLOS ONE, 8(4), 1–13.Google Scholar
  27. Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., Sotiropoulos, S.N. (2019). Using gpus to accelerate computational diffusion mri: From microstructure estimation to tractography and connectomes. NeuroImage, 188, 598–615.Google Scholar
  28. Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage, 32(3), 989–994.Google Scholar
  29. Iturria-Medina, Y., Canales-Rodríguez, E., Melie-García, L., Valdés-Hernández, P., Martínez-Montes, E., Alemán-Gómez, Y., Sánchez-Bornot, J. (2007). Characterizing brain anatomical connections using diffusion weighted mri and graph theory. NeuroImage, 36(3), 645–660.Google Scholar
  30. Jarbo, K., Verstynen, T., Schneider, W. (2012). In vivo quantification of global connectivity in the human corpus callosum. NeuroImage, 59(3), 1988–1996.Google Scholar
  31. Jbabdi, S., Woolrich, M., Andersson, J., Behrens, T. (2007). A bayesian framework for global tractography. NeuroImage, 37(1), 116–129.Google Scholar
  32. Jbabdi, S., Bellec, P., Toro, R., Daunizeau, J., Pélégrini-Issac, M., Benali, H. (2008). Accurate anisotropic fast marching for diffusion-based geodesic tractography. International Journal of Biomedical Imaging, 2008, 12.Google Scholar
  33. Kaneko, K. (1992). Overview of coupled map lattices. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2(3), 279–282.Google Scholar
  34. Karayumak, S.C., Ozarslan, E., Unal, G. (2018). Asymmetric orientation distribution functions (aodfs) revealing intravoxel geometry in diffusion mri. Magnetic Resonance Imaging, 49, 145–158.Google Scholar
  35. Kasenburg, N., Liptrot, M., Reislev, N.L., Ørting, SN, Nielsen, M., Garde, E., Feragen, A. (2016). Training shortest-path tractography: Automatic learning of spatial priors. NeuroImage, 130(Supplement C), 63–76.Google Scholar
  36. Kauffmann, C., & Piché, N. (2010). Seeded nd medical image segmentation by cellular automaton on gpu. International Journal of Computer Assisted Radiology and Surgery, 5(3), 251–262.Google Scholar
  37. Li, M., Ratnanather, J.T., Miller, M.I., Mori, S. (2014). Knowledge-based automated reconstruction of human brain white matter tracts using a path-finding approach with dynamic programming. NeuroImage, 88, 271–281.Google Scholar
  38. Maier-Hein, K.H., Neher, P.F., Houde, J.C., Cot, M.A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.C., Lin, Y.C., Ji, Q., et al. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 8(1), 1349.Google Scholar
  39. Mangin, J.F., Fillard, P., Cointepas, Y., Bihan, D.L., Frouin, V., Poupon, C. (2013). Toward global tractography. NeuroImage, 80(0), 290–296.Google Scholar
  40. Mittmann, A., Comunello, E., von Wangenheim, A. (2008). Diffusion tensor fiber tracking on graphics processing units. Computerized Medical Imaging and Graphics, 32(7), 521–530.Google Scholar
  41. Mojtaba, Z., Heidi, J., Steve, S., Olga, C., J TA, M.M.P. (2006). Functional anatomy of interhemispheric cortical connections in the human brain. Journal of Anatomy, 209(3), 311–320.Google Scholar
  42. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–9.Google Scholar
  43. Oguz, I., Boucharin, A., Lu, W., Vachet, C., Budin, F., Shi, Y., Styner, M. (2012). A minimum cost approach to connectivity from orientation distribution functions via efficient multi-directional graph propagation. In Proceedings of CDMRI Workshop, MICCAI 2012 (pp. 210–221).Google Scholar
  44. Ostrov, D.N., & Rucker, R. (1996). Continuous-valued cellular automata for nonlinear wave equations. Complex systems, 10(2), 91–120.Google Scholar
  45. Pannek, K., Mathias, J.L., Bigler, E.D., Brown, G., Taylor, J.D., Rose, S. (2010). An automated strategy for the delineation and parcellation of commissural pathways suitable for clinical populations utilising high angular resolution diffusion imaging tractography. NeuroImage, 50(3), 1044–1053.Google Scholar
  46. Parker, G.J.M., Wheeler-Kingshott, C.A.M., Barker, G.J. (2002). Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Transactions on Medical Imaging, 21 (5), 505–512.Google Scholar
  47. Peng, H., Orlichenko, A., Dawe, R.J., Agam, G., Zhang, S., Arfanakis, K. (2009). Development of a human brain diffusion tensor template. NeuroImage, 46(4), 967–980.Google Scholar
  48. Poupon, C., Mangin, J.F., Clark, C.A., Frouin, V., Régis, J, Le Bihan, D., Bloch, I. (2001). Towards inference of human brain connectivity from mr diffusion tensor data. Medical Image Analysis, 5(1), 1–15.Google Scholar
  49. Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., Mangin, J.F. (2008). New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (hardi) models. Magnetic Resonance in Medicine, 60(6), 1276–1283.Google Scholar
  50. Ratnanather, J.T., Lal, R.M., An, M., Poynton, C.B., Li, M., Jiang, H., Oishi, K., Selemon, L.D., Mori, S., Miller, M.I. (2013). Cortico-cortical, cortico-striatal, and cortico-thalamic white matter fiber tracts generated in the macaque brain via dynamic programming. Brain Connectivity, 3(5), 475–490.Google Scholar
  51. Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V. (2011). Global fiber reconstruction becomes practical. NeuroImage, 54(2), 955–962.Google Scholar
  52. Rex, D.E., Ma, J.Q., Toga, A.W. (2003). The loni pipeline processing environment. NeuroImage, 19(3), 1033–1048.Google Scholar
  53. Schilling, K.G., Daducci, A., Maier-Hein, K., Poupon, C., Houde, J.C., Nath, V., Anderson, A.W., Landman, B.A., Descoteaux, M. (2019a). Challenges in diffusion mri tractography – lessons learned from international benchmark competitions. Magnetic Resonance Imaging, 57, 194–209.Google Scholar
  54. Schilling, K.G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., Neher, P., Aydogan, D.B., Shi, Y., Ocampo-Pineda, M., Schiavi, S., Daducci, A., Girard, G., Barakovic, M., Rafael-Patino, J., Romascano, D., Rensonnet, G., Pizzolato, M., Bates, A., Fischi, E., Thiran, J.P., Canales-Rodríguez, E.J., Huang, C., Zhu, H., Zhong, L., Cabeen, R., Toga, A.W., Rheault, F., Theaud, G., Houde, J.C., Sidhu, J., Chamberland, M., Westin, C.F., Dyrby, T.B., Verma, R., Rathi, Y., Irfanoglu, M.O., Thomas, C., Pierpaoli, C., Descoteaux, M., Anderson, A.W., Landman, B.A. (2019b). Limits to anatomical accuracy of diffusion tractography using modern approaches. NeuroImage, 185, 1–11.Google Scholar
  55. de Schotten, M.T., ffytche, D.H., Bizzi, A., Dell’Acqua, F., Allin, M., Walshe, M., Murray, R., Williams, S.C., Murphy, D.G., Catani, M. (2011). Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with mr diffusion tractography. NeuroImage, 54(1), 49–59.Google Scholar
  56. Schumacher, L.V., Reisert, M., Nitschke, K., Egger, K., Urbach, H., Hennig, J., Weiller, C., Kaller, C.P. (2018). Probing the reproducibility of quantitative estimates of structural connectivity derived from global tractography. NeuroImage, 175, 215–229.Google Scholar
  57. Sotiropoulos, S.N., Bai, L., Morgan, P.S., Constantinescu, C.S., Tench, C.R. (2010). Brain tractography using q-ball imaging and graph theory: Improved connectivities through fibre crossings via a model-based approach. NeuroImage, 49(3), 2444–2456.Google Scholar
  58. Sotiropoulos, SN, Jbabdi, S, Xu, J, Andersson, JL, Moeller, S, Auerbach, EJ, Glasser, MF, Hernandez, M, Sapiro, G, Jenkinson, M, Feinberg, DA, Yacoub, E, Lenglet, C, Essen, DCV, Ugurbil, K, Behrens, TE. (2013). Advances in diffusion mri acquisition and processing in the human connectome project. NeuroImage, 80, 125–143. mapping the Connectome.Google Scholar
  59. Staempfli, P., Jaermann, T., Crelier, G., Kollias, S., Valavanis, A., Boesiger, P. (2006). Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging. NeuroImage, 30(1), 110–120.Google Scholar
  60. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A. (2004). Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution. NeuroImage, 23(3), 1176–1185.Google Scholar
  61. Tournier, J.D., Calamante, F., Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion mri: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35(4), 1459–1472.Google Scholar
  62. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J. (2003). Diffusion mri of complex neural architecture. Neuron, 40(5), 885–895.Google Scholar
  63. Van Essen, DC, Smith, SM, Barch, DM, Behrens, TE, Yacoub, E, Ugurbil, K. (2013). The wu-minn human connectome project: an overview. NeuroImage, 80, 62–79. mapping the Connectome.Google Scholar
  64. Van Horn, J.D., & Toga, A.W. (2014). Human neuroimaging as a “big data” science. Brain Imaging and Behavior, 8(2), 323–331.Google Scholar
  65. Von Neumann, J, & Burks, AW. (1966). Theory of Self-Reproducing Automata. Urbana and London: University of Illinois Press.Google Scholar
  66. Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., Mori S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage, 36(3), 630–644.Google Scholar
  67. Weiner, M.W., Aisen, P.S., Jack, C.R., Jagust, W.J., Trojanowski, J.Q., Shaw, L., Saykin, A.J., Morris, J.C., Cairns, N., Beckett, L.A., Toga, A., Green, R., Walter, S., Soares, H., Snyder, P., Siemers, E., Potter, W., Cole, P.E., Schmidt, M. (2010). The alzheimer’s disease neuroimaging initiative: Progress report and future plans. Alzheimer’s and Dementia, 6(3), 202–211.e7.Google Scholar
  68. Witelson, S.F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain: A Journal of Neurology, 112(3), 799–835.Google Scholar
  69. Wolfram, S. (2002). A New Kind of Science Vol. 5. Champaign: Wolfram Media.Google Scholar
  70. Yi-Ping, C., Kuan-Hung, C., Chun-Hung, Y., Kun-Hsien, C., Jyh-Horng, C., Ching-Po, L. (2009). Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Human Brain Mapping, 30(10), 3172–3187.Google Scholar
  71. Yoldemir, B., Acar, B., Firat, Z., Kilickesmez, O. (2012). Smt: a reliability based interactive dti tractography algorithm. IEEE Transactions on Medical Imaging, 31(10), 1929–1940.Google Scholar
  72. Zalesky, A. (2008). Dt-mri fiber tracking: a shortest paths approach. IEEE Transactions on Medical Imaging, 27, 1458–71.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Biomedical EngineeringYeditepe UniversityIstanbulTurkey

Personalised recommendations