Advertisement

3D-Deep Learning Based Automatic Diagnosis of Alzheimer’s Disease with Joint MMSE Prediction Using Resting-State fMRI

  • Nguyen Thanh Duc
  • Seungjun Ryu
  • Muhammad Naveed Iqbal Qureshi
  • Min Choi
  • Kun Ho LeeEmail author
  • Boreom LeeEmail author
Original Article

Abstract

We performed this research to 1) evaluate a novel deep learning method for the diagnosis of Alzheimer’s disease (AD) and 2) jointly predict the Mini Mental State Examination (MMSE) scores of South Korean patients with AD. Using resting-state functional Magnetic Resonance Imaging (rs-fMRI) scans of 331 participants, we obtained functional 3-dimensional (3-D) independent component spatial maps for use as features in classification and regression tasks. A 3-D convolutional neural network (CNN) architecture was developed for the classification task. MMSE scores were predicted using: linear least square regression (LLSR), support vector regression, bagging-based ensemble regression, and tree regression with group independent component analysis (gICA) features. To improve MMSE regression performance, we applied feature optimization methods including least absolute shrinkage and selection operator and support vector machine-based recursive feature elimination (SVM-RFE). The mean balanced test accuracy was 85.27% for the classification of AD versus healthy controls. The medial visual, default mode, dorsal attention, executive, and auditory related networks were mainly associated with AD. The maximum clinical MMSE score prediction accuracy with the LLSR method applied on gICA combined with SVM-RFE features had the lowest root mean square error (3.27 ± 0.58) and the highest R2 value (0.63 ± 0.02). Classification of AD and healthy controls can be successfully achieved using only rs-fMRI and MMSE scores can be accurately predicted using functional independent component features. In the absence of trained clinicians, AD disease status and clinical MMSE scores can be jointly predicted using 3-D deep learning and regression learning approaches with rs-fMRI data.

Keywords

Alzheimer’s disease Mini mental state examination Group ICA 3-D CNN LASSO Recursive feature elimination 

Notes

Acknowledgments

This work was supported by a GIST Research Institute (GRI) grant funded by the GIST in 2019. This work was also supported by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIT (NRF-2016M3A9E9941946), and the Original Technology Research Program for Brain Science of the NRF funded by the Korean government, MSIT (NRF-2014M3C7A1046041).

Compliance with Ethical Standards

Declaration of Interest

none.

References

  1. Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31(8), 1207–1216.Google Scholar
  2. Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., O'Boyle, J. G., Schultz, R. T., & Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage, 53(1), 247–256.CrossRefGoogle Scholar
  3. Barthel, H., Gertz, H. J., Dresel, S., Peters, O., Bartenstein, P., Buerger, K., Hiemeyer, F., Wittemer-Rump, S. M., Seibyl, J., Reininger, C., Sabri, O., & Florbetaben Study Group. (2011). Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. The Lancet Neurology, 10(5), 424–435.CrossRefGoogle Scholar
  4. Beaman, S. R. D., Beaman, P. E., Garcia-Pena, C., Villa, M. A., Heres, J., Córdova, A., & Jagger, C. (2004). Validation of a modified version of the Mini-Mental State Examination (MMSE) in Spanish. Aging, Neuropsychology, and Cognition, 11(1), 1–11.CrossRefGoogle Scholar
  5. Beckmann, C. F., Mackay, C. E., Filippini, N., & Smith, S. M. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. NeuroImage, 47(Suppl 1), S148.CrossRefGoogle Scholar
  6. Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E., & Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage, 83, 550–558.CrossRefGoogle Scholar
  7. Bloom, D. E., Boersch-Supan, A., McGee, P., & Seike, A. (2011). Population aging: facts, challenges, and responses. Benefits and Compensation International, 41(1), 22.2.Google Scholar
  8. Brier, M. R., Thomas, J. B., Snyder, A. Z., Benzinger, T. L., Zhang, D., Raichle, M. E., Holtzman, D. M., Morris, J. C., & Ances, B. M. (2012). Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. Journal of Neuroscience, 32(26), 8890–8899.CrossRefGoogle Scholar
  9. Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. Neuroreport, 17(16), 1687–1690.CrossRefGoogle Scholar
  10. Christensen, K., Doblhammer, G., Rau, R., & Vaupel, J. W. (2009). Ageing populations: the challenges ahead. The Lancet, 374(9696), 1196–1208.CrossRefGoogle Scholar
  11. Clark, C. M., Xie, S., Chittams, J., Ewbank, D., Peskind, E., Galasko, D., Morris, J. C., McKeel, D. W., Farlow, M., Weitlauf, S. L., Quinn, J., Kaye, J., Knopman, D., Arai, H., Doody, R. S., DeCarli, C., Leight, S., Lee, V. M. Y., & Trojanowski, J. Q. (2003). Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Archives of Neurology, 60(12), 1696–1702.CrossRefGoogle Scholar
  12. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.Google Scholar
  13. Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI)“brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2), 261–270.CrossRefGoogle Scholar
  14. Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 11073–11078.CrossRefGoogle Scholar
  15. Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure and Function, 213(1–2), 93–118.CrossRefGoogle Scholar
  16. Duc, N. T., & Lee, B. (2019). Microstate functional connectivity in EEG cognitive task revealed by multivariate Gaussian hidden Markov model with phase locking value. Journal of Neural Engineering, 16, 026033.  https://doi.org/10.1088/1741-2552/ab0169.CrossRefGoogle Scholar
  17. Duchesne, S., Caroli, A., Geroldi, C., Frisoni, G.B., & Collins, D.L. (2005). Predicting clinical variable from MRI features: application to MMSE in MCI. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 392–399). Springer, Berlin, Heidelberg.Google Scholar
  18. Duchesne, S., Caroli, A., Geroldi, C., Collins, D. L., & Frisoni, G. B. (2009). Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage, 47(4), 1363–1370.CrossRefGoogle Scholar
  19. Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Möller, H. E., Villringer, A., Sabri, O., & Schroeter, M. L. (2011). Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One, 6(3), e18111.CrossRefGoogle Scholar
  20. Fan, Y., Kaufer, D., & Shen, D. (2010). Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. In Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on 852–855.  https://doi.org/10.1109/ISBI.2010.5490120.
  21. Farde, L., Nordström, A. L., Karlsson, P., Halldin, C., & Sedvall, G. (1995). Positron emission tomography studies on dopamine receptors in schizophrenia. Clinical Neuropharmacology, 18, S121–S129.CrossRefGoogle Scholar
  22. Foroughan, M., Jafari, Z., Shirin, B. P., Ghaem, M. F. Z., & Rahgozar, M. (2008). Validation of mini-mental state examination (MMSE) in the elderly population of Tehran. Advances in Cognitive Science, 2(38), 29–37.Google Scholar
  23. Fountoulakis, K. N., Tsolaki, M., Chantzi, H., & Kazis, A. (2000). Mini mental state examination (MMSE): a validation study in Greece. American Journal of Alzheimer’s Disease, 15(6), 342–345.CrossRefGoogle Scholar
  24. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103(26), 10046–10051.CrossRefGoogle Scholar
  25. Franciotti, R., Falasca, N. W., Bonanni, L., Anzellotti, F., Maruotti, V., Comani, S., Thomas, A., Tartaro, A., Taylor, J. P., & Onofrj, M. (2013). Default network is not hypoactive in dementia with fluctuating cognition: an Alzheimer disease/dementia with Lewy bodies comparison. Neurobiology of Aging, 34(4), 1148–1158.CrossRefGoogle Scholar
  26. Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.CrossRefGoogle Scholar
  27. Frisoni, G. B., Fox, N. C., Jack, C. R., Jr., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67–77.CrossRefGoogle Scholar
  28. Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., Reiss, A. L., & Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429–437.CrossRefGoogle Scholar
  29. Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1–3), 389–422.CrossRefGoogle Scholar
  30. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision 1026–1034.  https://doi.org/10.1109/ICCV.2015.123.
  31. Hoops, S., Nazem, S., Siderowf, A. D., Duda, J. E., Xie, S. X., Stern, M. B., & Weintraub, D. (2009). Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology, 73(21), 1738–1745.CrossRefGoogle Scholar
  32. Jin, M., Pelak, V. S., & Cordes, D. (2012). Aberrant default mode network in subjects with amnestic mild cognitive impairment using resting-state functional MRI. Magnetic Resonance Imaging, 30(1), 48–61.CrossRefGoogle Scholar
  33. Kinsella, K., & Phillips, D. R. (2005). Global aging: The challenge of success, Population Reference Bureau. Washington, DC.Google Scholar
  34. Knopman, D. S., Boeve, B. F., & Petersen, R. C. (2003). Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. In Mayo Clinic Proceedings 78 (10), 1290–1308.  https://doi.org/10.4065/78.10.1290.
  35. Koch, W., Teipel, S., Mueller, S., Benninghoff, J., Wagner, M., Bokde, A. L., et al. (2012). Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiology of Aging, 33(3), 466–478.CrossRefGoogle Scholar
  36. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. NeuroImage, 26(2), 317–329.CrossRefGoogle Scholar
  37. Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., Fulham, M. J., & ADNI. (2015). Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Transactions on Biomedical Engineering, 62(4), 1132–1140.CrossRefGoogle Scholar
  38. Lu, W., & Rajapakse, J. C. (2006). ICA with reference. Neurocomputing, 69(16–18), 2244–2257.CrossRefGoogle Scholar
  39. Mahmoudi, A., Takerkart, S., Regragui, F., Boussaoud, D., & Brovelli, A. (2012). Multivoxel pattern analysis for FMRI data: a review. Computational and Mathematical Methods in Medicine, 2012, 1–14.CrossRefGoogle Scholar
  40. Mourao-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28(4), 980–995.CrossRefGoogle Scholar
  41. Nguyen, D. T., Ryu, S., Qureshi, M. N. I., Choi, M., Lee, K. H., & Lee, B. (2019). Hybrid multivariate pattern analysis combined with extreme learning machine for Alzheimer’s dementia diagnosis using multi-measure rs-fMRI spatial patterns. PLOS One, 14, e0212582.  https://doi.org/10.1371/journal.pone.0212582.CrossRefGoogle Scholar
  42. Oh, J., Chun, J. W., Kim, E., Park, H. J., Lee, B., & Kim, J. J. (2017). Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia. Brain and Behavior, 7(1), e00602.CrossRefGoogle Scholar
  43. Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., Matsushima, E., Iyo, M., Tateno, Y., & Toru, M. (1997). Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature, 385(6617), 634–636.CrossRefGoogle Scholar
  44. Pascoal, T. A., Mathotaarachchi, S., Shin, M., Park, A. Y., Mohades, S., Benedet, A. L., et al. (2018). Amyloid and tau signatures of brain metabolic decline in preclinical Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 45(6), 1021–1030.CrossRefGoogle Scholar
  45. Prince, M., Comas-Herrera, A., Knapp, M., Guerchet, M., & Karagiannidou, M. (2016). World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. Alzheimer’s Disease International.Google Scholar
  46. Qiu, A., Vaillant, M., Barta, P., Ratnanather, J. T., & Miller, M. I. (2008). Region-of-interest-based analysis with application of cortical thickness variation of left planum temporale in schizophrenia and psychotic bipolar disorder. Human Brain Mapping, 29(8), 973–985.CrossRefGoogle Scholar
  47. Qureshi, M. N. I., Min, B., Jo, H. J., & Lee, B. (2016). Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One, 11, e0160697.CrossRefGoogle Scholar
  48. Qureshi, M. N. I., Oh, J., Cho, D., Jo, H. J., & Lee, B. (2017a). Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Frontiers in Neuroinformatics, 11, 59.CrossRefGoogle Scholar
  49. Qureshi, M. N. I., Oh, J., Min, B., Jo, H. J., & Lee, B. (2017b). Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Frontiers in Human Neuroscience.  https://doi.org/10.3389/fnhum.2017.00157.
  50. Qureshi, M. N. I., Ryu, S., Song, J., Lee, K., & Lee, B. (2019). Evaluation of functional decline in Alzheimer’s dementia using 3D deep learning and group ICA for rs-fMRI measurements. Front Aging Neuroscience.  https://doi.org/10.3389/fnagi.2019.00008.
  51. Rajapakse, J. C., & Zhou, J. (2007). Learning effective brain connectivity with dynamic Bayesian networks. NeuroImage, 37(3), 749–760.CrossRefGoogle Scholar
  52. Rashid, B., Damaraju, E., Pearlson, G. D., & Calhoun, V. D. (2014). Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in Human Neuroscience, 8, 897.CrossRefGoogle Scholar
  53. Rice, D. P., Fox, P. J., Max, W., Webber, P. A., Hauck, W. W., Lindeman, D. A., & Segura, E. (1993). The economic burden of Alzheimer’s disease care. Health Affairs, 12(2), 164–176.CrossRefGoogle Scholar
  54. Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Human Brain Mapping, 26(4), 231–239.CrossRefGoogle Scholar
  55. Silbersweig, D. A., Stern, E., Frith, C., Cahill, C., Holmes, A., Grootoonk, S., Seaward, J., McKenna, P., Chua, S. E., Schnorr, L., Jones, T., & Frackowiak, R. S. J. (1995). A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378(6553), 176–179.CrossRefGoogle Scholar
  56. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv [preprint]:1409.1556.Google Scholar
  57. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.CrossRefGoogle Scholar
  58. Stonnington, C. M., Chu, C., Klöppel, S., Jack, C. R., Jr., Ashburner, J., Frackowiak, R. S., & Alzheimer Disease Neuroimaging Initiative. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.CrossRefGoogle Scholar
  59. Suk, H. I., & Shen, D. (2013). Deep learning-based feature representation for AD/MCI classification. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 583–590). Springer, Berlin, Heidelberg.Google Scholar
  60. Suk, H. I., Lee, S. W., Shen, D., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220(2), 841–859.CrossRefGoogle Scholar
  61. Suk, H. I., Wee, C. Y., Lee, S. W., & Shen, D. (2016). State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage, 129, 292–307.CrossRefGoogle Scholar
  62. Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Computational Biology, 4(6), e1000100.CrossRefGoogle Scholar
  63. Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157.CrossRefGoogle Scholar
  64. Syed, Y. Y., & Deeks, E. (2015). [18F] Florbetaben: a review in β-amyloid PET imaging in cognitive impairment. CNS Drugs, 29(7), 605–613.CrossRefGoogle Scholar
  65. Sylvester, C. M., Shulman, G. L., Jack, A. I., & Corbetta, M. (2009). Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal. Journal of Neuroscience, 29(34), 10671–10682.CrossRefGoogle Scholar
  66. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267–288.Google Scholar
  67. Tu, P. C., Hsieh, J. C., Li, C. T., Bai, Y. M., & Su, T. P. (2012). Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: a resting fMRI study. NeuroImage, 59(1), 238–247.CrossRefGoogle Scholar
  68. Visser, P. J., Scheltens, P., Verhey, F. R., Schmand, B., Launer, L. J., Jolles, J., & Jonker, C. (1999). Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology, 246(6), 477–485.CrossRefGoogle Scholar
  69. Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., & Li, K. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage, 31(2), 496–504.CrossRefGoogle Scholar
  70. Wang, Z., Childress, A. R., Wang, J., & Detre, J. A. (2007). Support vector machine learning-based fMRI data group analysis. NeuroImage, 36(4), 1139–1151.CrossRefGoogle Scholar
  71. Wang, Y., Fan, Y., Bhatt, P., & Davatzikos, C. (2010a). High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage, 50(4), 1519–1535.CrossRefGoogle Scholar
  72. Wang, J., Zuo, X., & He, Y. (2010b). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, 16.Google Scholar
  73. Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A. J., & Shen, L. (2011). Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 115–123). Springer, Berlin, Heidelberg.Google Scholar
  74. Wang, X. F., Jiang, Z., Daly, J. J., & Yue, G. H. (2012). A generalized regression model for region of interest analysis of fMRI data. NeuroImage, 59(1), 502–510.CrossRefGoogle Scholar
  75. Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., & Lange, K. (2009). Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, 25(6), 714–721.CrossRefGoogle Scholar
  76. Yan, K., & Zhang, D. (2015). Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors and Actuators B: Chemical, 212, 353–363.CrossRefGoogle Scholar
  77. Zhang, D., Shen, D., & Alzheimer's Disease Neuroimaging Initiative. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage, 59(2), 895–907.CrossRefGoogle Scholar
  78. Zhang, Y., Kimberg, D. Y., Coslett, H. B., Schwartz, M. F., & Wang, Z. (2014). Multivariate lesion-symptom mapping using support vector regression. Human Brain Mapping, 35(12), 5861–5876.CrossRefGoogle Scholar
  79. Zhu, X., Suk, H. I., & Shen, D. (2014). A novel multi-relation regularization method for regression and classification in AD diagnosis. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 401–408). Springer, Cham.Google Scholar
  80. Zhu, X., Suk, H. I., Wang, L., Lee, S. W., Shen, D., & Alzheimer’s Disease Neuroimaging Initiative. (2017). A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Medical Image Analysis, 38, 205–214.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT)Gwangju Institute of Science and Technology (GIST)GwangjuSouth Korea
  2. 2.Translational Neuroimaging Laboratory, The McGill University Research Center for Studies in Aging (MCSA)McGill UniversityMontrealCanada
  3. 3.Alzheimer’s Disease Research Unit, Douglas Mental Health University InstituteMcGill UniversityMontrealCanada
  4. 4.Department of PsychiatryMcGill UniversityMontrealCanada
  5. 5.National Research Center for DementiaChosun UniversityGwangjuSouth Korea
  6. 6.Department of Biomedical ScienceChosun UniversityGwangjuSouth Korea

Personalised recommendations