Advertisement

Automated Neuron Detection in High-Content Fluorescence Microscopy Images Using Machine Learning

  • Gadea MataEmail author
  • Miroslav Radojević
  • Carlos Fernandez-Lozano
  • Ihor Smal
  • Niels Werij
  • Miguel Morales
  • Erik Meijering
  • Julio Rubio
Original Article

Abstract

The study of neuronal morphology in relation to function, and the development of effective medicines to positively impact this relationship in patients suffering from neurodegenerative diseases, increasingly involves image-based high-content screening and analysis. The first critical step toward fully automated high-content image analyses in such studies is to detect all neuronal cells and distinguish them from possible non-neuronal cells or artifacts in the images. Here we investigate the performance of well-established machine learning techniques for this purpose. These include support vector machines, random forests, k-nearest neighbors, and generalized linear model classifiers, operating on an extensive set of image features extracted using the compound hierarchy of algorithms representing morphology, and the scale-invariant feature transform. We present experiments on a dataset of rat hippocampal neurons from our own studies to find the most suitable classifier(s) and subset(s) of features in the common practical setting where there is very limited annotated data for training. The results indicate that a random forests classifier using the right feature subset ranks best for the considered task, although its performance is not statistically significantly better than some support vector machine based classification models.

Keywords

Neuron detection High-content analysis Fluorescence microscopy Machine learning 

Notes

Acknowledgments

This work was partially supported by the Spanish Ministry of Economy, Industry and Competitiveness (project numbers MTM2014-54151-P, UNLC08-1E-002, UNLC13-13-3503), the University of La Rioja (project number FPI-UR-13), the European Regional Development Fund (FEDER) of the European Union, the Netherlands Organization for Scientific Reseach (project number 612.001.018), and the Erasmus University Medical Center Fellowship Program. Carlos Fernandez-Lozano was supported by a Juan de la Cierva postdoctoral fellowship grant (Spanish Ministry of Economy, Industry and Competitiveness, FJCI-2015-26071).

References

  1. Anderl, J.L., Redpath, S., Ball, A.J. (2009). A neuronal and astrocyte co-culture assay for high content analysis of neurotoxicity. Journal of Visualized Experiments, 5(27), 1173.Google Scholar
  2. Antony, P.M.A., Trefois, C., Stojanovic, A., Baumuratov, A.S., Kozak, K. (2013). Light microscopy applications in systems biology: opportunities and challenges. Cell Communication and Signaling, 11(24), 1–19.Google Scholar
  3. Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K.W., Schindelin, J., Cardona, A., Seung, H.S. (2017). Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics, 33(15), 2424–2426.PubMedCrossRefGoogle Scholar
  4. Ascoli, G.A. (2015). Trees of the brain, roots of the mind. Cambridge: MIT Press.Google Scholar
  5. Bianchini, M., & Scarselli, F. (2014). On the complexity of neural network classifiers: a comparison between shallow and deep architectures. IEEE Transactions on Neural Networks and Learning Systems, 25(8), 1553–1565.PubMedCrossRefGoogle Scholar
  6. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C. (2012). Resampling methods for meta-model validation with recommendations for evolutionary computation. Evolutionary Computation, 20(2), 249–275.PubMedCrossRefGoogle Scholar
  7. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Jones, Z., Casalicchio, G. (2016). mlr: Machine Learning in R. https://CRAN.R-project.org/package=mlr.
  8. Bishop, C.M. (2006). Pattern recognition and machine learning. New York: Springer.Google Scholar
  9. Boser, B.E., Guyon, I.M., Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (pp. 144–152).Google Scholar
  10. Bougen-Zhukov, N., Loh, S.Y., Lee, H.K., Loo, L.H. (2017). Large-scale image-based screening and profiling of cellular phenotypes. Cytometry Part A, 91(2), 115–125.CrossRefGoogle Scholar
  11. Branco, P., Torgo, L., Ribeiro, R.P. (2016). A survey of predictive modeling on imbalanced domains. ACM Computing Surveys, 49(2), 31:1–31:50.CrossRefGoogle Scholar
  12. Bredenbeek, P.J., Frolov, I., Rice, C.M., Schlesinger, S. (1993). Sindbis virus expression vectors: packaging of RNA, replicons by using defective helper RNAs. Journal of Virology, 67(11), 6439–6446.PubMedPubMedCentralGoogle Scholar
  13. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  14. Burges, C.J.C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.CrossRefGoogle Scholar
  15. Charoenkwan, P., Hwang, E., Cutler, R.W., Lee, H.C., Ko, L.W., Huang, H.L., Ho, S.Y. (2013). HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening. BMC Bioinformatics, 14(S16), S12.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1), 321–357.CrossRefGoogle Scholar
  17. Chawla, N.V., Japkowicz, N., Kotcz, A. (2004). Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1–6.CrossRefGoogle Scholar
  18. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.CrossRefGoogle Scholar
  19. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other Kernel-Based learning methods. Cambridge: University Press.CrossRefGoogle Scholar
  20. Cuesto, G., Enriquez-Barreto, L., Caramés, C., Cantarero, M., Gasull, X., Sandi, C., Ferrús, A., Acebes, Á., Morales, M. (2011). Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons. Journal of Neuroscience, 31(8), 2721–2733.PubMedCrossRefGoogle Scholar
  21. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 886–893).Google Scholar
  22. Daskalaki, S., Kopanas, I., Avouris, N. (2006). Evaluation of classifiers for an uneven class distribution problem. Applied Artificial Intelligence, 20(5), 381–417.CrossRefGoogle Scholar
  23. Dehmelt, L., Poplawski, G., Hwang, E., Halpain, S. (2011). NeuriteQuant: an open source toolkit for high content screens of neuronal morphogenesis. BMC Neuroscience, 12(100), 1–13.Google Scholar
  24. Dragunow, M. (2008). High-content analysis in neuroscience. Nature Reviews Neuroscience, 9(10), 779–788.PubMedCrossRefGoogle Scholar
  25. Ebrahimpour, M.K., Zare, M., Eftekhari, M., Aghamolaei, G. (2017). Occam’s razor in dimension reduction: using reduced row Echelon, form for finding linear independent features in high dimensional microarray datasets. Engineering Applications of Artificial Intelligence, 62, 214–221.CrossRefGoogle Scholar
  26. Enriquez-Barreto, L., Cuesto, G., Dominguez-Iturza, N., Gavilán, E., Ruano, D., Sandi, C., Fernández-Ruiz, A., Martín-Vázquez, G., Herreras, O., Morales, M. (2014). Learning improvement after PI3K, activation correlates with de novo formation of functional small spines. Frontiers in Molecular Neuroscience, 6, 54.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Enriquez-Barreto, L., & Morales, M. (2016). The PI3K, signaling pathway as a pharmacological target in autism related disorders and schizophrenia. Molecular and Cellular Therapies, 4, 2.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fawcett, T. (2006). An introduction to ROC, analysis. Pattern Recognition Letters, 27(8), 861–874.CrossRefGoogle Scholar
  29. Fei-Fei, L., & Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (Vol. 2 pp. 524–531).Google Scholar
  30. Fernandez-Lozano, C., Gestal, M., Munteanu, C.R., Dorado, J., Pazos, A. (2016). A methodology for the design of experiments in computational intelligence with multiple regression models. PeerJ, 4, e2721.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Finner, H. (1993). On a monotonicity problem in step-down multiple test procedures. Journal of the American Statistical Association, 88(423), 920–923.CrossRefGoogle Scholar
  32. Forman, G., & Scholz, M. (2010). Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. ACM SIGKDD Explorations Newsletter, 12(1), 49–57.CrossRefGoogle Scholar
  33. Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11(1), 86–92.CrossRefGoogle Scholar
  34. Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gabor, D. (1946). Theory of communication. Journal of the Institution of Electrical Engineers — Part III: Radio and Communication Engineering, 93(26), 429–457.Google Scholar
  36. García, S., Fernández, A., Luengo, J., Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Information Sciences, 180(10), 2044–2064.CrossRefGoogle Scholar
  37. García, V., Mollineda, R.A., Sȧnchez, J.S. (2014). A bias correction function for classification performance assessment in two-class imbalanced problems. Knowledge-Based Systems, 59, 66–74.CrossRefGoogle Scholar
  38. Ghosh, A., Kumar, H., Sastry, P.S. (2017). Robust loss functions under label noise for deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 1919–1925).Google Scholar
  39. Goslin, K., Asumussen, H., Banker, G. (1998). Rat hippocampal neurons in low-density culture. In Culturing Nerve cells (pp. 339–370). Cambridge: The MIT Press.Google Scholar
  40. Gosain, A., & Sardana, S. (2017). Handling class imbalance problem using oversampling techniques: a review, In Proceedings of the International Conference on Advances in Computing, Communications and Informatics (pp. 79–85).Google Scholar
  41. Gradshteyn, I.S., & Ryzhik, I.M. (1994). Table of integrals, series and products. New York: Academic Press.Google Scholar
  42. Greenspan, H., van Ginneken, B., Summers, R.M. (2016). Deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Transactions on Medical Imaging, 35(5), 1153–1159.CrossRefGoogle Scholar
  43. Gupta, P., Batra, S.S., Jayadeva. (2017). Sparse short-term time series forecasting models via minimum model complexity. Neurocomputing, 243, 1–11.CrossRefGoogle Scholar
  44. Hadjidementriou, E., Grossberg, M., Nayar, S. (2001). Spatial information in multiresolution histograms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. I.702–I.709).Google Scholar
  45. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G. (2017). Learning from class-imbalanced data: review of methods and applications. Expert Systems with Applications, 73, 220–239.CrossRefGoogle Scholar
  46. Haralick, R.M., Shanmugam, K., Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610–621.CrossRefGoogle Scholar
  47. He, H., & Garcia, E.A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.CrossRefGoogle Scholar
  48. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).Google Scholar
  49. Hechenbichler, K., & Schliep, K. (2004). Weighted k-nearest-neighbor techniques and ordinal classification. Sonderforschungsbereich, 386(399), 1–16.Google Scholar
  50. Hong, X., Gao, J., Chen, S., Harris, C.J. (2013). Particle swarm optimisation assisted classification using elastic net prefiltering. Neurocomputing, 122, 210–220.CrossRefGoogle Scholar
  51. Horvath, P., Wild, T., Kutay, U., Csucs, G. (2011). Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results. Journal of Biomolecular Screening, 16(9), 1059–1067.PubMedCrossRefGoogle Scholar
  52. Iacca, G., Neri, F., Mininno, E., Ong, Y.S., Lim, M.H. (2012). Ockham’s razor in memetic computing: three stage optimal memetic exploration. Information Sciences, 188, 17–43.CrossRefGoogle Scholar
  53. Jain, S., van Kesteren, R.E., Heutink, P. (2012). High content screening in neurodegenerative diseases. Journal of Visualized Experiments, 59, e3452.Google Scholar
  54. Jiang, R.M., Crookes, D., Luo, N., Davidson, M.W. (2010). Live-cell tracking using SIFT, features in DIC microscopic videos. IEEE Transactions on Biomedical Engineering, 57(9), 2219–2228.PubMedCrossRefGoogle Scholar
  55. Kingma, D.P., & Ba, J. (2014). Adam: a method for stochastic optimization, Computing Research Repository arXiv:1412.6980.
  56. Kraus, O.Z., & Frey, B.J. (2016). Computer vision for high content screening. Critical Reviews in Biochemistry and Molecular Biology, 51(2), 102–109.PubMedCrossRefGoogle Scholar
  57. Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221–232.CrossRefGoogle Scholar
  58. Kuminski, E., George, J., Wallin, J., Shamir, L. (2014). Combining human and machine learning for morphological analysis of galaxy images. Publications of the Astronomical Society of the Pacific, 126(944), 959–967.CrossRefGoogle Scholar
  59. Lazebnik, S., Schmid, C., Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (Vol. 2 pp. 2169–2178).Google Scholar
  60. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.PubMedCrossRefGoogle Scholar
  61. Lee, D.H., Lee, D.W., Han, B.S. (2016). Possibility study of scale invariant feature transform (SIFT), algorithm application to spine magnetic resonance imaging. PLOS ONE, 11(4), 1–9.Google Scholar
  62. Li, J., Fong, S., Wong, R.K., Chu, V.W. (2018). Adaptive multi-objective swarm fusion for imbalanced data classification. Information Fusion, 39, 1–24.CrossRefGoogle Scholar
  63. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.Google Scholar
  64. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., Sánchez, C.I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.PubMedCrossRefGoogle Scholar
  65. Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRefGoogle Scholar
  66. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability — Volume 1: Statistics (pp. 281–297). Berkeley: University of California Press.Google Scholar
  67. Mata, G., Radojević, M., Smal, I., Morales, M., Meijering, E., Rubio, J. (2016). Automatic detection of neurons in high-content microscope images using machine learning approaches. In Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (pp. 330–333).Google Scholar
  68. MathWorks. (2016). Version 9.0.0.341360 (R2016a). Natick: MA.Google Scholar
  69. Meijering, E. (2010). Neuron tracing in perspective. Cytometry Part A, 77(7), 693–704.CrossRefGoogle Scholar
  70. Meijering, E., Carpenter, A.E., Peng, H., Hamprecht, F.A., Olivo-Marin, J.C. (2016). Imagining the future of bioimage analysis. Nature Biotechnology, 34(12), 1250–1255.PubMedCrossRefGoogle Scholar
  71. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F. (2017). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071.
  72. Mualla, F., Scholl, S., Sommerfeldt, B., Maier, A., Hornegger, J. (2013). Automatic cell detection in bright-field microscope images using SIFT, random forests, and hierarchical clustering. IEEE Transactions on Medical Imaging, 32(12), 2274–2286.PubMedCrossRefGoogle Scholar
  73. Ni, D., Chui, Y.P., Qu, Y., Yang, X.S., Qin, J., Wong, T.T., Ho, S.S.H., Heng, P.A. (2009). Reconstruction of volumetric ultrasound panorama based on improved 3D, SIFT. Computerized Medical Imaging and Graphics, 33(7), 559–566.PubMedCrossRefGoogle Scholar
  74. Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G. (2008). WND-CHARM: Multi-purpose image classification using compound image transforms. Pattern Recognition Letters, 29(11), 1684–1693.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.CrossRefGoogle Scholar
  76. van Pelt, J., van Ooyen, A., Uylings, H. (2001). The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function. Anatomy and Embryology, 204(4), 255–265.PubMedCrossRefGoogle Scholar
  77. Prewitt, J.M.S. (1970). Object enhancement and extraction. In Picture Processing and psychopictorics (pp. 75–149). New York: Academic Press.Google Scholar
  78. R Core Team. (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.
  79. Radio, N. (2012). Neurite outgrowth assessment using high content analysis methodology. Methods in Molecular Biology, 846, 247–260.PubMedCrossRefGoogle Scholar
  80. Ramón y Cajal, S. (2007). Histología del sistema nervioso del hombre y de los vertebrados. CSIC Madrid reprinted in.Google Scholar
  81. Saeys, Y., Inza, I., Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517.PubMedCrossRefGoogle Scholar
  82. Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F. (2015). SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Information Sciences, 291, 184–203.CrossRefGoogle Scholar
  83. Samworth, R.J. (2012). Optimal weighted nearest neighbour classifiers. The Annals of Statistics, 40(5), 2733–2763.CrossRefGoogle Scholar
  84. Schliep, K., & Hechenbichler, K. (2016). kknn: Weighted k-Nearest Neighbors. https://CRAN.R-project.org/package=kknn.
  85. Shaikhina, T., & Khovanova, N.A. (2017). Handling limited datasets with neural networks in medical applications: a small-data approach. Artificial Intelligence in Medicine, 75, 51–63.PubMedCrossRefGoogle Scholar
  86. Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J., Goldberg, I.G. (2008). Wndchrm – an open source utility for biological image analysis. Source Code for Biology and Medicine, 3(1), 1–13.CrossRefGoogle Scholar
  87. Shamir, L., Delaney, J.D., Orlov, N., Eckley, D.M., Goldberg, I.G. (2010). Pattern recognition software and techniques for biological image analysis. PLOS Computational Biology, 6(11), e1000974.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Shamir, L. (2012a). Automatic detection of peculiar galaxies in large datasets of galaxy images. Journal of Computational Science, 3(3), 181–189.CrossRefGoogle Scholar
  89. Shamir, L., & Tarakhovsky, J.A. (2012b). Computer analysis of art. Journal on Computing and Cultural Heritage, 5(2), 7.CrossRefGoogle Scholar
  90. Shapiro, S.S., & Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591– 611.CrossRefGoogle Scholar
  91. Shen, D., Wu, G., Suk, H.I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221– 248.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Simon, R. (2007). Resampling strategies for model assessment and selection. In Fundamentals of Data Mining in Genomics and Proteomics (pp. 173–186). Boston: Springer.Google Scholar
  93. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Computing Research Repository arXiv:1409.1556.
  94. Singh, S., Carpenter, A.E., Genovesio, A. (2014). Increasing the content of high-content screening: an overview. Journal of Biomolecular Screening, 19(5), 640–650.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Smafield, T., Pasupuleti, V., Sharma, K., Huganir, R.L., Ye, B., Zhou, J. (2015). Automatic dendritic length quantification for high throughput screening of mature neurons. Neuroinformatics, 13(4), 443–458.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sommer, C., & Gerlich, D.W. (2013). Machine learning in cell biology – teaching computers to recognize phenotypes. Journal of Cell Science, 126(24), 5529–5539.PubMedCrossRefGoogle Scholar
  97. Squire, L.R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195–231.PubMedCrossRefGoogle Scholar
  98. Strobl, C., Hothorn, T., Zeileis, A. (2009). A new, conditional variable importance measure for random forests available in the party package. The R Journal, 1(2), 14–17.Google Scholar
  99. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J. (2016). Convolutional neural networks for medical image analysis: full training or fine tuning?. IEEE Transactions on Medical Imaging, 35(5), 1299–1312.PubMedCrossRefGoogle Scholar
  100. Tamura, H., Mori, S., Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE Transactions on Systems Man, and Cybernetics, 8(6), 460–473.CrossRefGoogle Scholar
  101. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 58(1), 267–288.Google Scholar
  102. Uhlmann, V., Singh, S., Carpenter, A.E. (2016). CP-CHARM: segmentation-free image classification made accessible. BMC Bioinformatics, 17(1), 51.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Vallotton, P., Lagerstrom, R., Sun, C., Buckley, M., Wang, D., Silva, M.D., Tan, S.S., Gunnersen, J.M. (2007). Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision. Cytometry Part A, 71(10), 889–895.CrossRefGoogle Scholar
  104. Vapnik, V.N. (1998). Statistical learning theory. New York: Wiley.Google Scholar
  105. Vapnik, V.N. (1999). The nature of statistical learning theory. New York: Springer-Verlag.Google Scholar
  106. Vedaldi, A., & Fulkerson, B. (2008). VLFeat: An Open and Portable Library of Computer Vision Algorithms. http://www.vlfeat.org/.
  107. Vert, J.P., Tsuda, K., Schölkopf, B. (2004). A primer on kernel methods. In Kernel Methods in Computational Biology (pp. 35–70). Cambridge: MIT Press.Google Scholar
  108. Wickham, H. (2009). Ggplot2: Elegant Graphics for Data Analysis. New York: Springer.CrossRefGoogle Scholar
  109. Wu, C., Schulte, J., Sepp, K.J., Littleton, J.T., Hong, P. (2010). Automatic robust neurite detection and morphological analysis of neuronal cell cultures in high-content screening. Neuroinformatics, 8(2), 83–100.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Xia, X., & Wong, S.T.C. (2012). Concise review: a high-content screening approach to stem cell research and drug discovery. Stem Cells, 30(9), 1800–1807.PubMedCrossRefGoogle Scholar
  111. Yang, J., Yu, K., Gong, Y., Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1794–1801).Google Scholar
  112. Yu, D., Yang, F., Yang, C., Leng, C., Cao, J., Wang, Y., Tian, J. (2016). Fast rotation-free feature-based image registration using improved N-SIFT, and GMM-based parallel optimization. IEEE Transactions on Biomedical Engineering, 63(8), 1653–1664.PubMedCrossRefGoogle Scholar
  113. Zhang, Y., Zhou, X., Degterev, A., Lipinski, M., Adjeroh, D., Yuan, J., Wong, S.T.C. (2007). A novel tracing algorithm for high throughput imaging: screening of neuron-based assays. Journal of Neuroscience Methods, 160(1), 149–162.PubMedCrossRefGoogle Scholar
  114. Zhang, R., Zhou, W., Li, Y., Yu, S., Xie, Y. (2013). Nonrigid registration of lung CT images based on tissue features. Computational and Mathematical Methods in Medicine, 2013, 834192.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of La RiojaLogroñoSpain
  2. 2.Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and RadiologyErasmus University Medical CenterRotterdamNetherlands
  3. 3.Department of Computer ScienceUniversity of A CoruñaA CoruñaSpain
  4. 4.Instituto de Investigación Biomédica de A CoruñaComplexo Hospitalario Universitario de A CoruñaA CoruñaSpain
  5. 5.Molecular Cognition Laboratory, Biophysics Institute, CSIC-UPV/EHUCampus Universidad del País VascoLeioaSpain

Personalised recommendations