, Volume 17, Issue 2, pp 211–223 | Cite as

An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity

  • Michael de RidderEmail author
  • Karsten Klein
  • Jean Yang
  • Pengyi Yang
  • Jim Lagopoulos
  • Ian Hickie
  • Max Bennett
  • Jinman Kim
Original Article


Analysis and interpretation of functional magnetic resonance imaging (fMRI) has been used to characterise many neuronal diseases, such as schizophrenia, bipolar disorder and Alzheimer’s disease. Functional connectivity networks (FCNs) are widely used because they greatly reduce the amount of data that needs to be interpreted and they provide a common network structure that can be directly compared. However, FCNs contain a range of data uncertainties stemming from inherent limitations, e.g. during acquisition, as well as the loss of voxel-level data, and the use of thresholding in data abstraction. Additionally, human uncertainties arise during interpretation due to the complexity in understanding the data. While existing FCN visual analytics tools have begun to mitigate the human ambiguities, reducing the impact of data limitations is an open problem. In this paper, we propose a novel visual analytics framework with three linked, purpose-designed components to evoke deeper interpretation of the fMRI data: (i) an enhanced FCN abstraction; (ii) a temporal signal viewer; and (iii) the anatomical context. Each component has been specifically designed with novel visual cues and interaction to expose the impact of uncertainties on the data. We augment this with two methods designed for comparing subjects, by using a small multiples and a marker approach. We demonstrate the enhancements enabled by our framework on three case studies of common research scenarios, using clinical schizophrenia data, which highlight the value in interpreting fMRI FCN data with an awareness of the uncertainties. Finally, we discuss our framework in the context of fMRI visual analytics and the extensibility of our approach.


Visual Analytics Functional Magnetic Resonance Imaging Functional Connectivity Uncertainty Framework Visualization 


Compliance with Ethical Standards

Conflict of Interest

None declared.


  1. Angulo, D. A., Schneider, C., Oliver, J. H., Charpak, N., & Hernandez, J. T. (2016). A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets. Frontiers in neuroinformatics, 10.Google Scholar
  2. Arbabshirani, M., Castro, E., & Calhoun, V (2014). Accurate classification of schizophrenia patients based on novel resting-state fmri features. In EMBC, 6691–6694.Google Scholar
  3. Bach, B., Henry-Riche, N., Dwyer, T., Madhyastha, T., Fekete, J. D., & Grabowski, T. (2015). Small MultiPiles: Piling time to explore temporal patterns in dynamic networks. Computer Graphics Forum, 34(3), 31–40.CrossRefGoogle Scholar
  4. Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., & Dragicevic, P. (2016). Time curves: Folding time to visualize patterns of temporal evolution in data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 559–568.CrossRefPubMedGoogle Scholar
  5. Böttger, J., Schäfer, A., & Lohmann, G. (2014). Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Transactions on Visualization and Computer Graphics, 20(3), 471–480.CrossRefPubMedGoogle Scholar
  6. Carp, J. (2012). On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments. Frontiers in Neuroscience, 6, 149.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cui, W., Wang, X., & Riche, N. H. (2014). Let It Flow : a Static Method for Exploring Dynamic Graphs. 121–128, doi:
  8. de Ridder, M., Klein, K., & Kim, J (2015). CereVA-Visual Analysis of Functional Brain Connectivity. In IVAPP, 131–138.Google Scholar
  9. Eklund, A., Nichols, T., & Knutsson, H. (2016). Can parametric statistical methods be trusted for fMRI based group studies? PNAS, 113(28), 7900–7905.CrossRefPubMedGoogle Scholar
  10. Filippi, M. (2016). fMRI Techniques and Protocols: Springer.Google Scholar
  11. Filippi, M., & Filippi (2009). fMRI techniques and protocols: Springer.Google Scholar
  12. FMRIB Analysis Group, O. U. (2016). FSL.
  13. Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176(2), 83–94.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fujiwara, T., Chou, J.-K., McCullough, A. M., Ranganath, C., & Ma, K.-L (2017). A visual analytics system for brain functional connectivity comparison across individuals, groups, and time points. In Pacific Visualization Symposium (PacificVis), IEEE, 2017 (pp. 250-259): IEEE.Google Scholar
  15. Giraldo-Chica, M., & Woodward, N. D. (2016). Review of thalamocortical resting-state fmri studies in schizophrenia. Schizophrenia Research, 6.Google Scholar
  16. Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwartz, Y., Sochat, V. V., Ghosh, S. S., et al. (2016). NeuroVault. Org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain. Neuroimage, 124, 1242–1244.CrossRefPubMedGoogle Scholar
  17. Irimia, A., Chambers, M. C., Torgerson, C. M., & Van Horn, J. D. (2012). Circular representation of human cortical networks for subject and population-level connectomic visualization. Neuroimage, 60(2), 1340–1351. Scholar
  18. Jezzard, P., Matthews, P., & Smith, S. (2001). Functional MRI: an introduction to methods: Oxford University Press.Google Scholar
  19. Jie, B., Liu, M., Jiang, X., & Zhang, D. (2016) Sub-network Based Kernels for Brain Network Classification. In Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, (622–629): ACM.Google Scholar
  20. Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. AJNR. American Journal of Neuroradiology, 34(10), 1866–1872. Scholar
  21. Liang, M., Zhou, Y., Jiang, T., Liu, Z., Tian, L., Liu, H., et al. (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport, 17(2), 209-213.Google Scholar
  22. Liu, Y., Wang, K., Chunshui, Y. U., He, Y., Zhou, Y., Liang, M., et al. (2008). Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: A review of resting-state fMRI studies. Neuropsychologia, 46(6), 1648-1656.Google Scholar
  23. Liu, F., Xie, B., Wang, Y., Guo, W., Fouche, J.-P., Long, Z., et al. (2015). Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain Topography, 28(2), 221-237.Google Scholar
  24. Margulies, D. S., Böttger, J., Watanabe, A., & Gorgolewski, K. J. (2013). Visualizing the human connectome. NeuroImage, 80, 445–461. Scholar
  25. National Institute of Health (2016). AFNI.
  26. Peeters, R., & Sunaert, S. (2007). Clinical BOLD fMRI: artifacts, tips and tricks. In Clinical Functional MRI (pp. 227-249): Springer.Google Scholar
  27. Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson, G. D., et al. (2016). Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage, 134, 645-657.Google Scholar
  28. Ristovski, G., Preusser, T., Hahn, H. K., & Linsen, L. (2014). Uncertainty in medical visualization: Towards a taxonomy. Compters and Graphics, 39, 60–73.CrossRefGoogle Scholar
  29. Sarraf, S., & Tofighi, G. (2016). Classification of alzheimer's disease using fmri data and deep learning convolutional neural networks. arXiv Preprint arXiv, 1603, 08631.Google Scholar
  30. Sheline, Y. I., & Raichle, M. E. (2013). Resting state functional connectivity in preclinical Alzheimer’s disease. Biological Psychiatry, 74(5), 340–347.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sporns, O. (2010). Networks of the Brain: MIT Press.Google Scholar
  32. Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroschience, 17, 652–660.CrossRefGoogle Scholar
  33. Stevens, M. T. R., Darcy, R. C., Stroink, G., Clarke, D. B., & Beyea, S. D. (2013). Thresholds in fmri studies: Reliable for single subjects? Journal of Neuroscience Methods, 219(2), 312–323.CrossRefPubMedGoogle Scholar
  34. Swenson, R. (2006). Chapter 11: The Cerebral Cortex. In Review of Clinical and Functional Neuroscience (Vol. 1): Dartmouth Medical School.Google Scholar
  35. Wang, S., Zhang, Y., Lv, L., Wu, R., Fan, X., Zhao, J., et al. (2017). Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis. Schizophrenia Research.Google Scholar
  36. Woodward, N. D., Karbasforoushan, M. S., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. American Journal of Psychiatry, 169(10).Google Scholar
  37. Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394–400.CrossRefGoogle Scholar
  39. Zeng, H., Ramos, C. G., Nair, V. A., Hu, Y., Liao, J., La, C., et al. (2015). Regional homogeneity (ReHo) changes in new onset versus chronic benign epilepsy of childhood with centrotemporal spikes (BECTS): A resting state fMRI study. Epilepsy Research, 116, 79-85.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biomedical and Multimedia Information Technologies (BMIT) research groupThe University of SydneySydneyAustralia
  2. 2.Department of Computer Science and Information ScienceThe University of KonstanzKonstanzGermany
  3. 3.School of Mathematics and StatisticsThe University of SydneySydneyAustralia
  4. 4.Brain and Mind CentreThe University of SydneySydneyAustralia

Personalised recommendations