Advertisement

A Web-Based Atlas Combining MRI and Histology of the Squirrel Monkey Brain

  • Kurt G. Schilling
  • Yurui Gao
  • Matthew Christian
  • Vaibhav Janve
  • Iwona Stepniewska
  • Bennett A. Landman
  • Adam W. Anderson
Original Article

Abstract

The squirrel monkey (Saimiri sciureus) is a commonly-used surrogate for humans in biomedical research. In the neuroimaging community, MRI and histological atlases serve as valuable resources for anatomical, physiological, and functional studies of the brain; however, no digital MRI/histology atlas is currently available for the squirrel monkey. This paper describes the construction of a web-based multi-modal atlas of the squirrel monkey brain. The MRI-derived information includes anatomical MRI contrast (i.e., T2-weighted and proton-density-weighted) and diffusion MRI metrics (i.e., fractional anisotropy and mean diffusivity) from data acquired both in vivo and ex vivo on a 9.4 Tesla scanner. The histological images include Nissl and myelin stains, co-registered to the corresponding MRI, allowing identification of cyto- and myelo-architecture. In addition, a bidirectional neuronal tracer, biotinylated dextran amine (BDA) was injected into the primary motor cortex, enabling highly specific identification of regions connected to the injection location. The atlas integrates the results of common image analysis methods including diffusion tensor imaging glyphs, labels of 57 white-matter tracts identified using DTI-tractography, and 18 cortical regions of interest identified from Nissl-revealed cyto-architecture. All data are presented in a common space, and all image types are accessible through a web-based atlas viewer, which allows visualization and interaction of user-selectable contrasts and varying resolutions. By providing an easy to use reference system of anatomical information, our web-accessible multi-contrast atlas forms a rich and convenient resource for comparisons of brain findings across subjects or modalities. The atlas is called the Combined Histology-MRI Integrated Atlas of the Squirrel Monkey (CHIASM). All images are accessible through our web-based viewer (https://chiasm.vuse.vanderbilt.edu/), and data are available for download at (https://www.nitrc.org/projects/smatlas/).

Keywords

Web-based atlas MRI Histology Squirrel monkey User interactive 

Notes

Acknowledgements

This work was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award numbers RO1 NS058639 and S10 RR17799. Whole slide imaging was performed in the Digital Histology Shared Resource at Vanderbilt University Medical Center (www.mc.vanderbilt.edu/dhsr).

References

  1. Akert, R. E. K. (1963). Stereotaxic Atlas of the Brain of the Squirrel Monkey: University of Wisconsin Press.Google Scholar
  2. Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. Neuroimage, 20(2), 870–888.  https://doi.org/10.1016/S1053-8119(03)00336-7.CrossRefPubMedGoogle Scholar
  3. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.  https://doi.org/10.1016/j.neuroimage.2007.07.007.CrossRefPubMedGoogle Scholar
  4. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54(3), 2033–2044.  https://doi.org/10.1016/j.neuroimage.2010.09.025.CrossRefPubMedGoogle Scholar
  5. Banks, M. L., Czoty, P. W., & Negus, S. S. (2017). Utility of nonhuman Primates in substance use disorders research. ILAR Journal, 1–14.  https://doi.org/10.1093/ilar/ilx014.
  6. Bookstein, F. L. (1989). Principal warps - thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6), 567–585.  https://doi.org/10.1109/34.24792.CrossRefGoogle Scholar
  7. Budde, M. D., & Annese, J. (2013). Quantification of anisotropy and fiber orientation in human brain histological sections. Frontiers in Integrative Neuroscience, 7, 3.  https://doi.org/10.3389/fnint.2013.00003.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen, L. M., Friedman, R. M., & Roe, A. W. (2003). Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science, 302(5646), 881–885.  https://doi.org/10.1126/science.1087846.CrossRefPubMedGoogle Scholar
  9. Chen, L. M., Mishra, A., Yang, P. F., Wang, F., & Gore, J. C. (2015). Injury alters intrinsic functional connectivity within the primate spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 5991–5996.  https://doi.org/10.1073/pnas.1424106112.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen, L. M., Yang, P. F., Wang, F., Mishra, A., Shi, Z., Wu, R., et al. (2017). Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates. Magnetic Resonance Imaging, 39, 71–81.  https://doi.org/10.1016/j.mri.2017.01.020.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Choe, A. S., Gao, Y., Li, X., Compton, K. B., Stepniewska, I., & Anderson, A. W. (2011). Accuracy of image registration between MRI and light microscopy in the ex vivo brain. [research support, N.I.H., extramural]. Magnetic Resonance Imaging, 29(5), 683–692.  https://doi.org/10.1016/j.mri.2011.02.022.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Choe, A. S., Stepniewska, I., Colvin, D. C., Ding, Z., & Anderson, A. W. (2012). Validation of diffusion tensor MRI in the central nervous system using light microscopy: Quantitative comparison of fiber properties. NMR in Biomedicine, 25(7), 900–908.  https://doi.org/10.1002/nbm.1810.CrossRefPubMedPubMedCentralGoogle Scholar
  13. D'Arceuil, H. E., Westmoreland, S., & de Crespigny, A. J. (2007). An approach to high resolution diffusion tensor imaging in fixed primate brain. Neuroimage, 35(2), 553–565.  https://doi.org/10.1016/j.neuroimage.2006.12.028.CrossRefPubMedGoogle Scholar
  14. Ding, S. L., Royall, J. J., Sunkin, S. M., Ng, L., Facer, B. A., Lesnar, P., et al. (2017). Comprehensive cellular-resolution atlas of the adult human brain. The Journal of Comparative Neurology, 525(2), 407.  https://doi.org/10.1002/cne.24130.CrossRefPubMedGoogle Scholar
  15. Dyrby, T. B., Baare, W. F., Alexander, D. C., Jelsing, J., Garde, E., & Sogaard, L. V. (2011). An ex vivo imaging pipeline for producing high-quality and high-resolution diffusion-weighted imaging datasets. [Research Support, Non-U.S. Gov't Validation Studies]. Human Brain Mapping, 32(4), 544–563.  https://doi.org/10.1002/hbm.21043.CrossRefPubMedGoogle Scholar
  16. Frey, S., Pandya, D. N., Chakravarty, M. M., Bailey, L., Petrides, M., & Collins, D. L. (2011). An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). Neuroimage, 55(4), 1435–1442.  https://doi.org/10.1016/j.neuroimage.2011.01.040.CrossRefPubMedGoogle Scholar
  17. Gallyas, F. (1971). Silver staining of Alzheimer's neurofibrillary changes by means of physical development. Acta Morphologica Academiae Scientiarum Hungaricae, 19(1), 1–8.PubMedGoogle Scholar
  18. Gao, Y., Choe, A. S., Stepniewska, I., Li, X., Avison, M. J., & Anderson, A. W. (2013). Validation of DTI tractography-based measures of primary motor area connectivity in the squirrel monkey brain. [Research Support, N.I.H., Extramural. Validation Studies]. PLoS One, 8(10), e75065.  https://doi.org/10.1371/journal.pone.0075065.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gao, Y., Parvathaneni, P., Schilling, K., Zu, Z., Choe, A., Stepniewska, I., et al. (2016). A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (Saimiri sciureus) based on diffusion tensor imaging. Paper presented at the in proceedings of the SPIE medical imaging conference, San Diego, California, February.Google Scholar
  20. Goode, A., Gilbert, B., Harkes, J., Jukic, D., & Satyanarayanan, M. (2013). OpenSlide: A vendor-neutral software foundation for digital pathology. Journal of Pathology Informatics, 4, 27.  https://doi.org/10.4103/2153-3539.119005.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hendrickx, A. G., & Binkerd, P. E. (1990). Nonhuman primates and teratological research. Journal of Medical Primatology, 19(2), 81–108.PubMedGoogle Scholar
  22. Hsiao, M. Y., Chen, C. C., & Chen, J. H. (2011). BrainKnowledge: A human brain function mapping knowledge-base system. Neuroinformatics, 9(1), 21–38.  https://doi.org/10.1007/s12021-010-9083-9.CrossRefPubMedGoogle Scholar
  23. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. Neuroimage, 62(2), 782–790.  https://doi.org/10.1016/j.neuroimage.2011.09.015.CrossRefPubMedGoogle Scholar
  24. Jeurissen, B., Descoteaux, M., Mori, S., & Leemans, A. (2017). Diffusion MRI fiber tractography of the brain. NMR in Biomedicine.  https://doi.org/10.1002/nbm.3785.
  25. Johansen-Berg, H., & Behrens, T. E. (2006). Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Current Opinion in Neurology, 19(4), 379–385.  https://doi.org/10.1097/01.wco.0000236618.82086.01.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kaas, J. H. (2005). The future of mapping sensory cortex in primates: Three of many remaining issues. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 653–664.  https://doi.org/10.1098/rstb.2005.1624.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kaas, J. H., Gharbawie, O. A., & Stepniewska, I. (2011). The organization and evolution of dorsal stream multisensory motor pathways in primates. Frontiers in Neuroanatomy, 5, 34.  https://doi.org/10.3389/fnana.2011.00034.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaas, J. H., Stepniewska, I., & Gharbawie, O. (2012). Cortical networks subserving upper limb movements in primates. European Journal of Physical and Rehabilitation Medicine, 48(2), 299–306.PubMedPubMedCentralGoogle Scholar
  29. Klein, S., Staring, M., Murphy, K., Viergever, M. A., & Pluim, J. P. (2010). Elastix: A toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging, 29(1), 196–205.  https://doi.org/10.1109/TMI.2009.2035616.CrossRefPubMedGoogle Scholar
  30. Knosche, T. R., Anwander, A., Liptrot, M., & Dyrby, T. B. (2015). Validation of tractography: Comparison with manganese tracing. Human Brain Mapping, 36(10), 4116–4134.  https://doi.org/10.1002/hbm.22902.CrossRefPubMedPubMedCentralGoogle Scholar
  31. MacLean, J. A. G. P. D. (1962). A Stereotaxic Atlas of the Squirrel Monkey's Brain (Saimiri sciureus) U.S. Department of Health, Education, and Welfare.Google Scholar
  32. Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A probabilistic atlas of the human brain: Theory and rationale for its development. The international consortium for brain mapping (ICBM). Neuroimage, 2(2), 89–101.CrossRefPubMedGoogle Scholar
  33. Merzenich, M. M., Kaas, J. H., Wall, J., Nelson, R. J., Sur, M., & Felleman, D. (1983). Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience, 8(1), 33–55.CrossRefPubMedGoogle Scholar
  34. Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269.CrossRefPubMedGoogle Scholar
  35. Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., et al. (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage, 40(2), 570–582.  https://doi.org/10.1016/j.neuroimage.2007.12.035.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Murakami, T., Ibi, K., Kuraishi, T., Hattori, S., Kai, C., Ishiguro, N., et al. (2014). Failure of heterogeneous amyloid-enhancing factor in geriatric squirrel monkeys (Saimiri boliviensis). Journal of Medical Primatology, 43(6), 488–491.  https://doi.org/10.1111/jmp.12136.CrossRefPubMedGoogle Scholar
  37. Myers, R. M., Greiner, S. M., Harvey, M. E., Griesmann, G., Kuffel, M. J., Buhrow, S. A., et al. (2007). Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clinical Pharmacology and Therapeutics, 82(6), 700–710.  https://doi.org/10.1038/sj.clpt.6100409.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Paul, C. A., Beltz, B., & Berger-Sweeney, J. (2008). The nissl stain: a stain for cell bodies in brain sections. Cold Spring Harbor Protocols, 2008, pdb.prot4805.  https://doi.org/10.1101/pdb.prot4805.PubMedGoogle Scholar
  39. Preuss, T. M., Stepniewska, I., & Kaas, J. H. (1996). Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation study. The Journal of Comparative Neurology, 371(4), 649–676.  https://doi.org/10.1002/(SICI)1096-9861(19960805)371:4<649::AID-CNE12>3.0.CO;2-E.CrossRefPubMedGoogle Scholar
  40. Reiner, A., Veenman, C. L., Medina, L., Jiao, Y., Del Mar, N., & Honig, M. G. (2000). Pathway tracing using biotinylated dextran amines. Journal of Neuroscience Methods, 103(1), 23–37.CrossRefPubMedGoogle Scholar
  41. Roe, A. W., Winberry, J. E., & Friedman, R. M. (2017). Study of single and multidigit activation in monkey somatosensory cortex using voltage-sensitive dye imaging. Neurophotonics, 4(3), 031219.  https://doi.org/10.1117/1.NPh.4.3.031219.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rohde, G. K., Aldroubi, A., & Dawant, B. M. (2003). The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Transactions on Medical Imaging, 22(11), 1470–1479.  https://doi.org/10.1109/tmi.2003.819299.CrossRefPubMedGoogle Scholar
  43. Schilling, K., Janve, V., Gao, Y., Stepniewska, I., Landman, B. A., & Anderson, A. W. (2016). Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. Neuroimage, 129, 185–197.  https://doi.org/10.1016/j.neuroimage.2016.01.022.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schilling, K. G., Gao, Y., Stepniewska, I., Wu, T. L., Wang, F., Landman, B. A., et al. (2017). The VALiDATe29 MRI based Multi-Channel atlas of the squirrel monkey brain. Neuroinformatics, 15, 321–331.  https://doi.org/10.1007/s12021-017-9334-0.CrossRefPubMedGoogle Scholar
  45. Schmahmann, J. D., & Pandya, D. (2009). Fiber pathways of the brain: OUP USA.Google Scholar
  46. Secci, M. E., Auber, A., Panlilio, L. V., Redhi, G. H., Thorndike, E. B., Schindler, C. W., et al. (2017). Attenuating nicotine reinforcement and relapse by enhancing endogenous brain levels of Kynurenic acid in rats and squirrel monkeys. Neuropsychopharmacology, 42(8), 1619–1629.  https://doi.org/10.1038/npp.2017.21.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stepniewska, I., Preuss, T. M., & Kaas, J. H. (1993). Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. The Journal of Comparative Neurology, 330(2), 238–271.  https://doi.org/10.1002/cne.903300207.CrossRefPubMedGoogle Scholar
  48. Sun, P., Parvathaneni, P., Schilling, K. G., Gao, Y., Janve, V., Anderson, A., et al. (2015). Integrating histology and MRI in the first digital brain of common squirrel monkey, Saimiri sciureus. Proceedings of SPIE The International Society for Optical Engineering, 9417.  https://doi.org/10.1117/12.2081443.
  49. Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C. L., et al. (2013). Allen brain atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Research, 41(Database issue), D996–D1008.  https://doi.org/10.1093/nar/gks1042.PubMedGoogle Scholar
  50. Toga, A. W., Samaie, M., & Payne, B. A. (1989). Digital rat brain: A computerized atlas. Brain Research Bulletin, 22(2), 323–333.CrossRefPubMedGoogle Scholar
  51. Toga, A. W., Ambach, K. L., & Schluender, S. (1994). High-resolution anatomy from in situ human brain. Neuroimage, 1(4), 334–344.  https://doi.org/10.1006/nimg.1994.1018.CrossRefPubMedGoogle Scholar
  52. Tournier, J. D., Calamante, F., & Connelly, A. (2012). MRtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 22(1), 53–66.  https://doi.org/10.1002/ima.22005.CrossRefGoogle Scholar
  53. Uno, Y., Uehara, S., & Yamazaki, H. (2016). Utility of non-human primates in drug development: Comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochemical Pharmacology, 121, 1–7.  https://doi.org/10.1016/j.bcp.2016.06.008.CrossRefPubMedGoogle Scholar
  54. Wang, Z., Chen, L. M., Negyessy, L., Friedman, R. M., Mishra, A., Gore, J. C., et al. (2013). The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron, 78(6), 1116–1126.  https://doi.org/10.1016/j.neuron.2013.04.023.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Woodward, A., Hashikawa, T., Maeda, M., Kaneko, T., Hikishima, K., Iriki, A., et al. (2018). The brain/MINDS 3D digital marmoset brain atlas. Scientific Data, 5, 180009.  https://doi.org/10.1038/sdata.2018.9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wu, T. L., Wang, F., Anderson, A. W., Chen, L. M., Ding, Z., & Gore, J. C. (2016). Effects of anesthesia on resting state BOLD signals in white matter of non-human primates. Magnetic Resonance Imaging, 34(9), 1235–1241.  https://doi.org/10.1016/j.mri.2016.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yeh, F. C., Verstynen, T. D., Wang, Y., Fernandez-Miranda, J. C., & Tseng, W. Y. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One, 8(11), e80713.  https://doi.org/10.1371/journal.pone.0080713.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleUSA
  2. 2.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  3. 3.Department of PsychologyVanderbilt UniversityNashvilleUSA
  4. 4.Radiology and Radiological SciencesVanderbilt UniversityNashvilleUSA
  5. 5.Department of Electrical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations