, Volume 17, Issue 1, pp 147–161 | Cite as

Morphological Neuron Classification Based on Dendritic Tree Hierarchy

  • Evelyn Perez CervantesEmail author
  • Cesar Henrique Comin
  • Roberto Marcondes Cesar Junior
  • Luciano da Fontoura Costa
Original Article


The shape of a neuron can reveal interesting properties about its function. Therefore, morphological neuron characterization can contribute to a better understanding of how the brain works. However, one of the great challenges of neuroanatomy is the definition of morphological properties that can be used for categorizing neurons. This paper proposes a new methodology for neuron morphological analysis by considering different hierarchies of the dendritic tree for characterizing and categorizing neuronal cells. The methodology consists in using different strategies for decomposing the dendritic tree along its hierarchies, allowing the identification of relevant parts (possibly related to specific neuronal functions) for classification tasks. A set of more than 5000 neurons corresponding to 10 classes were examined with supervised classification algorithms based on this strategy. It was found that classification accuracies similar to those obtained by using whole neurons can be achieved by considering only parts of the neurons. Branches close to the soma were found to be particularly relevant for classification.


Neuron Morphological reconstruction Morphometry Dendritic arborization Dendritic tree Digital neuronal reconstruction Data sharing Morphological classification Supervised classification Feature selection 



C. H. Comin thanks FAPESP (Grant No. 15/18942-8) for financial support. L. da F. Costa thanks CNPq (Grant No. 307333/2013-2) for support. This work has also been supported by the FAPESP grant 2015/22308-2, Capes and CNPq.

Compliance with Ethical Standards

Conflict of interests

The authors declare no conflict of interest.


  1. Armañanzas, R., & Ascoli, G.A. (2015). Towards the automatic classification of neurons. Trends in Neurosciences, 38(5), 307–318.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ascoli, G.A. (2002). Computational neuroanatomy: principles and methods. Springer Science & Business Media.Google Scholar
  3. Ascoli, G.A., Donohue, D.E., Halavi, M. (2007). a central resource for neuronal morphologies. The Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRefGoogle Scholar
  4. Barbosa, M.S., da Fontoura Costa, L., de Sousa Bernardes, E. (2003). Neuromorphometric characterization with shape functionals. Physical Review E, 67(6), 061910.CrossRefGoogle Scholar
  5. Bazán, N. G., & Lolley, R.N. (2013). Neurochemistry of the retina: proceedings of the international symposium on the neurochemistry of the retina held in Athens, Greece, August 28-September 1 1979. Elsevier.Google Scholar
  6. Bernard, A., Sorensen, S.A., Lein, E.S. (2009). Shifting the paradigm: new approaches for characterizing and classifying neurons. Current Opinion in Neurobiology, 19(5), 530–536.PubMedCrossRefGoogle Scholar
  7. Bota, M., & Swanson, L.W. (2007). The neuron classification problem. Brain Research Reviews, 56(1), 79–88.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cajal, S.R.y, & Azoulay, L. (1955). Histologie du systèeme nerveux de l’homme & des vertébrés. Instituto Ramon Y Cajal: Consejo superior de investigaciones cientificas.Google Scholar
  9. Cannon, R., Turner, D., Pyapali, G., Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84(1), 49–54.PubMedCrossRefGoogle Scholar
  10. Chang, C.-C., & Lin, C.-J. (2011). Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.Google Scholar
  11. Comin, C.H., & da Fontoura Costa, L. (2013). Shape, connectedness and dynamics in neuronal networks. Journal of Neuroscience Methods, 220(2), 100–115.PubMedCrossRefGoogle Scholar
  12. Costa, L.D.F., Zawadzki, K., Miazaki, M., Viana, M.P., Taraskin, S. (2010). Unveiling the neuromorphological space. Frontiers in Computational Neuroscience, 4, 150.PubMedCentralCrossRefGoogle Scholar
  13. da Costa, F.L., & Velte, T.J. (1999). Automatic characterization and classification of ganglion cells from the salamander retina. Journal of Comparative Neurology, 404(1), 33–51.PubMedCrossRefGoogle Scholar
  14. DeFelipe, J. (2001). Cortical interneurons: from cajal to 2001. Progress in Brain Research, 136, 215–238.CrossRefGoogle Scholar
  15. Ding, M., & Glanzman, D. (2011). The dynamic brain: an ex- ploration of neuronal variability and its functional significance. USA: Oxford University Press.CrossRefGoogle Scholar
  16. Dong, X., Shen, K., Bülow, H. E. (2015). Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annual Review of Physiology, 77, 271–300.PubMedCrossRefGoogle Scholar
  17. Gillette, T., & Ascoli, G. (2015). Topological characterization of neuronal arbor morphology via sequence representation. i. Motif analysis.Google Scholar
  18. Guyon, I., Weston, J., Barnhill, S., Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1), 389–422.CrossRefGoogle Scholar
  19. Halavi, M., Hamilton, K.A., Parekh, R., Ascoli, G.A. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Frontiers in Neuroscience, 6(49), 1–11.Google Scholar
  20. Hosp, J.A., Strüber, M., Yanagawa, Y., Obata, K., Vida, I., Jonas, P., Bartos, M. (2014). Morphophysiological criteria divide dentate gyrus interneurons into classes. Hippocampus, 24(2), 189–203.PubMedCrossRefGoogle Scholar
  21. Kandel, E.R., Schwartz, J.H., Jessell, T.M., et al. (2000). Principles of neural science Vol. 4. New York: McGrawhill.Google Scholar
  22. Lefebvre, J.L., Sanes, J.R., Kay, J.N. (2015). Development of dendritic form and function. Annual Review of Cell and Developmental Biology, 31, 741–777.PubMedCrossRefGoogle Scholar
  23. López-Cruz, P L., Larrañaga, P., DeFelipe, J., Bielza, C. (2014). Bayesian network modeling of the consensus between experts: an application to neuron classification. International Journal of Approximate Reasoning, 55(1), 3–22.CrossRefGoogle Scholar
  24. Lu, Y., Carin, L., Coifman, R., Shain, W., Roysam, B. (2015). Quantitative arbor analytics: unsupervised harmonic co-clustering of populations of brain cell arbors based on l-measure. Neuroinformatics, 13(1), 47–63.PubMedCrossRefGoogle Scholar
  25. Magee, J.C. (2000). Dendritic integration of excitatory synaptic input. Nature Reviews Neuroscience, 1(3), 181.PubMedCrossRefGoogle Scholar
  26. Mainen, Z.F., & Sejnowski, T.J. (1996). In uence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382(6589), 363.PubMedCrossRefGoogle Scholar
  27. McGarry, L.M., Packer, A.M., Fino, E., Nikolenko, V., Sippy, T., Yuste, R. (2010). Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes. Frontiers in Neural Circuits, 4, 12.PubMedPubMedCentralGoogle Scholar
  28. Mihaljević, B., Benavides-Piccione, R., Bielza, C., DeFelipe, J., Larrañaga, P. (2015). Bayesian network classifiers for categorizing cortical gabaergic interneurons. Neuroinformatics, 13(2), 193–208.PubMedCrossRefGoogle Scholar
  29. Mottini, A., Descombes, X., Besse, F. (2014). Axonal tree classification using an elastic shape analysis based distance. In 2014 IEEE 11th International symposium on biomedical imaging (ISBI) (pp. 850–853). IEEE.Google Scholar
  30. Parekh, R., & Ascoli, G.A. (2013). Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6), 1017–1038.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30(5), 1138–1168.PubMedCrossRefGoogle Scholar
  32. Ruz, I.D., & Schultz, S.R. (2014). Localising and classifying neurons from high density mea recordings. Journal of Neuroscience Methods, 233, 115–128.CrossRefGoogle Scholar
  33. Santana, R., McGarry, L., Bielza, C., Larrañaga, P., Yuste, R. (2013). Classification of neocortical interneurons using affinity propagation. Frontier in Neural Circuits, 7, 185.Google Scholar
  34. Scorcioni, R., Polavaram, S., Ascoli, G.A. (2008). L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Sharpee, T.O. (2014). Toward functional classification of neuronal types. Neuron, 83(6), 1329–1334.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Sümbül, U., Zlateski, A., Vishwanathan, A., Masland, R.H., Seung, H.S. (2014a). Automated computation of arbor densities: a step toward identifying neuronal cell types. Frontiers in Neuroanatomy, 8, 139.Google Scholar
  37. Sümbül, U., Song, S., McCulloch, K., Becker, M., Lin, B., Sanes, J.R., Masland, R.H., Seung, H.S. (2014b). A genetic and computational approach to structurally classify neuronal types. Nature Communications, 5.Google Scholar
  38. Teeter, C.M., & Stevens, C.F. (2011). A general principle of neural arbor branch density. Current Biology, 21(24), 2105–2108.PubMedCrossRefGoogle Scholar
  39. Torben-Nielsen, B. (2014). An efficient and extendable python library to analyze neuronal morphologies. Neuroinformatics, 12(4), 619.PubMedCrossRefGoogle Scholar
  40. Uji, Y., Yamamura, H., et al. (1995). Morphological classification of retinal ganglion cells in mice. Journal of Comparative Neurology, 356(3), 368–386.PubMedCrossRefGoogle Scholar
  41. Uylings, H.B., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems, 13(3), 397–414.CrossRefGoogle Scholar
  42. Uylings, H.B., Van Pelt, J., Verwer, R.W., McConnell, P. (1989). Statistical analysis of neuronal populations. In Computer techniques in neuroanatomy (pp. 241–264). Springer.Google Scholar
  43. Zhao, T., & Plaza, S.M. (2014). Automatic neuron type identification by neurite localization in the drosophila medulla. arXiv:1409.1892.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics and StatisticsUniversity of São PauloSão PauloBrazil
  2. 2.Department of Computer ScienceFederal University of São CarlosSão CarlosBrazil
  3. 3.São Carlos Institute of PhysicsUniversity of São PauloSão CarlosBrazil

Personalised recommendations