Advertisement

GPU Accelerated Browser for Neuroimaging Genomics

Abstract

Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Eklund, A., Friman, O., Andersson, M., Knutsson, H. (2011). A gpu accelerated interactive interface for exploratory functional connectivity analysis of fmri data. In 2011 18Th IEEE international conference on image processing, pp. 1589–1592. https://doi.org/10.1109/ICIP.2011.6115753.

  2. Gembris, D., Neeb, M., Gipp, M., Kugel, A., Männer, R. (2011). Correlation analysis on gpu systems using nvidia’s cuda. Journal of Real-Time Image Processing, 6(4), 275–280. https://doi.org/10.1007/s11554-010-0162-9.

  3. Glahn, D., Thompson, P., Blangero, J. (2007). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28(6), 488–501. https://doi.org/10.1002/hbm.20401.

  4. Hariri, A., Drabant, E., Weinberger, D. (2006). Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry, 59(10), 888–97. https://doi.org/10.1016/j.biopsych.2005.11.005.

  5. Hirschhorn, J.N., & Daly, M.J. (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics, 6(2), 95–108. https://doi.org/10.1038/nrg1521.

  6. Kim, S., Shen, L., Saykin, A., West, J. (2009). Data synthesis and tool development for exploring imaging genomic patterns. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings . IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2009, 298–305. https://doi.org/10.1109/CIBCB.2009.4925742.

  7. Kim, S., Shen, L., Saykin, A., West, J. (2009). Visual exploration of genetic association with voxel-based imaging phenotypes in an mci/ad study. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2009, 3849–52. https://doi.org/10.1109/IEMBS.2009.5332570.

  8. Kim, S., Swaminathan, S., Inlow, M., Risacher, S., Nho, K., Shen, L., Foroud, T., Petersen, R., Aisen, P., Soares, H., Toledo, J., Shaw, L., Trojanowski, J., Weiner, M., McDonald, B., Farlow, M., Ghetti, B., Saykin, A. (2013). Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel. PloS one, 8(7), e70,269. https://doi.org/10.1371/journal.pone.0070269.

  9. Liu, J., McRae, A., Nyholt, D., Medland, S., Wray, N., Brown, K., Hayward, N., Montgomery, G., Visscher, P., Martin, N., Macgregor, S. (2010). A versatile gene-based test for genome-wide association studies. American Journal of Human Genetics, 87(1), 139–45. https://doi.org/10.1016/j.ajhg.2010.06.009.

  10. Liu, W., Zhu, P., Anderson, J.S., Yurgelun-Todd, D., Fletcher, P.T. (2010). Spatial regularization of functional connectivity using high-dimensional markov random fields. Med Image Comput Comput Assist Interv, 13(0 2), 363–370. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214154/. 20879336[pmid].

  11. Mishra, A., & Macgregor, S. (2015). Vegas2: Software for more flexible gene-based testing. Twin Research and Human Genetics : the Official Journal of the International Society for Twin Studies, 18(1), 86–91. https://doi.org/10.1017/thg.2014.79.

  12. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M., Bender, D., Maller, J., Sklar, P., de Bakker, P., Daly, M., Sham, P. (2007). Plink: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–75. https://doi.org/10.1086/519795.

  13. Risacher, S., Saykin, A., West, J., Shen, L., Firpi, H., McDonald, B. (2009). Baseline mri predictors of conversion from mci to probable ad in the adni cohort. Current Alzheimer Research, 6(4), 347–61.

  14. Saykin, A.J., Shen, L., Foroud, T.M., Potkin, S.G., Swaminathan, S., Kim, S., Risacher, S.L., Nho, K., Huentelman, M.J., Craig, D.W., Thompson, P.M., Stein, J.L., Moore, J.H., Farrer, L.A., Green, R.C., Bertram, L., Jack C.R.J., Weiner, M.W. (2010). Alzheimer’s disease neuroimaging, I.: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement, 6(3), 265–73. https://doi.org/10.1016/j.jalz.2010.03.013. https://www.ncbi.nlm.nih.gov/pubmed/20451875.

  15. Saykin, A.J., Shen, L., Yao, X., Kim, S., Nho, K., Risacher, S.L., Ramanan, V.K., Foroud, T.M., Faber, K.M., Sarwar, N., Munsie, L.M., Hu, X., Soares, H.D., Potkin, S.G., Thompson, P.M., Kauwe, J.S., Kaddurah-Daouk, R., Green, R.C., Toga, A.W., Weiner, M.W. (2015). Alzheimer’s disease neuroimaging, I.: Genetic studies of quantitative mci and ad phenotypes in adni: Progress, opportunities, and plans. Alzheimers Dement, 11(7), 792–814. https://doi.org/10.1016/j.jalz.2015.05.009. https://www.ncbi.nlm.nih.gov/pubmed/26194313.

  16. Seshadri, S., DeStefano, A., Au, R., Massaro, J., Beiser, A., Kelly-Hayes, M., Kase, C., D’Agostino, R., Decarli, C., Atwood, L., Wolf, P. (2007). Genetic correlates of brain aging on mri and cognitive test measures: a genome-wide association and linkage analysis in the framingham study. BMC Medical Genetics, 8 Suppl 1, S15. https://doi.org/10.1186/1471-2350-8-S1-S15.

  17. Shen, L., & Cooper, L.A. (2017). Imaging genomics. Pacific Symposium on Biocomputing, 22, 51–57. https://www.ncbi.nlm.nih.gov/pubmed/27896961.

  18. Shen, L., Kim, S., Risacher, S., Nho, K., Swaminathan, S., West, J., Foroud, T., Pankratz, N., Moore, J., Sloan, C., Huentelman, M., Craig, D., Dechairo, B., Potkin, S., Jack, C., Weiner, M., Saykin, A. (2010). Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in mci and ad: a study of the adni cohort. NeuroImage, 53(3), 1051–63. https://doi.org/10.1016/j.neuroimage.2010.01.042.

  19. Shen, L., Thompson, P., Potkin, S., Bertram, L., Farrer, L., Foroud, T., Green, R., Hu, X., Huentelman, M., Kim, S., Kauwe, J., Li, Q., Liu, E., Macciardi, F., Moore, J., Munsie, L., Nho, K., Ramanan, V., Risacher, S., Stone, D., Swaminathan, S., Toga, A., Weiner, M., Saykin, A. (2014). Genetic analysis of quantitative phenotypes in ad and mci: imaging, cognition and biomarkers. Brain Imaging and Behavior, 8(2), 183–207. https://doi.org/10.1007/s11682-013-9262-z.

  20. Viding, E., Williamson, D., Hariri, A. (2006). Developmental imaging genetics: challenges and promises for translational research. Development and Psychopathology, 18(3), 877–92.

  21. Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Cedarbaum, J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Luthman, J., Morris, J.C., Petersen, R.C., Saykin, A.J., Shaw, L., Shen, L., Schwarz, A., Toga, A.W., Trojanowski, J.Q. (2015). Alzheimer’s Disease Neuroimaging, I.: 2014 update of the alzheimer’s disease neuroimaging initiative: A review of papers published since its inception. Alzheimers Dement, 11(6), e1–120. https://doi.org/10.1016/j.jalz.2014.11.001. https://www.ncbi.nlm.nih.gov/pubmed/26073027.

  22. Yao, X., Yan, J., Liu, K., Kim, S., Nho, K., Risacher, S.L., Greene, C.S., Moore, J.H., Saykin, A.J., Shen, L. (2017). Alzheimer’s Disease Neuroimaging, I.: Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx344. https://www.ncbi.nlm.nih.gov/pubmed/28575147.

  23. Zondervan, K., & Cardon, L. (2007). Designing candidate gene and genome-wide case-control association studies. Nature Protocols, 2(10), 2492–501. https://doi.org/10.1038/nprot.2007.366.

Download references

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Funding Information

This work was funded in part by the National Institutes of Health (NIH) grants R01 EB022574, R01 LM011360, U01 AG024904, P30 AG10133, R01 AG019771 and IUPUI ITDP Program.

Author information

Correspondence to Bob Zigon.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

For the Alzheimer’s Disease Neuroimaging Initiative

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 68.2 MB)

(MP4 68.2 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zigon, B., Li, H., Yao, X. et al. GPU Accelerated Browser for Neuroimaging Genomics. Neuroinform 16, 393–402 (2018). https://doi.org/10.1007/s12021-018-9376-y

Download citation

Keywords

  • GPU
  • Genomics
  • MRI
  • Alzheimer’s disease
  • Data mining
  • Versatile gene based association study