, Volume 16, Issue 2, pp 231–251 | Cite as

Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia

  • Meysam HashemiEmail author
  • Axel Hutt
  • Laure Buhry
  • Jamie Sleigh
Original Article


Mathematical modeling is a powerful tool that enables researchers to describe the experimentally observed dynamics of complex systems. Starting with a robust model including model parameters, it is necessary to choose an appropriate set of model parameters to reproduce experimental data. However, estimating an optimal solution of the inverse problem, i.e., finding a set of model parameters that yields the best possible fit to the experimental data, is a very challenging problem. In the present work, we use different optimization algorithms based on a frequentist approach, as well as Monte Carlo Markov Chain methods based on Bayesian inference techniques to solve the considered inverse problems. We first probe two case studies with synthetic data and study models described by a stochastic non-delayed linear second-order differential equation and a stochastic linear delay differential equation. In a third case study, a thalamo-cortical neural mass model is fitted to the EEG spectral power measured during general anesthesia induced by anesthetics propofol and desflurane. We show that the proposed neural mass model fits very well to the observed EEG power spectra, particularly to the power spectral peaks within δ − (0 − 4 Hz) and α − (8 − 13 Hz) frequency ranges. Furthermore, for each case study, we perform a practical identifiability analysis by estimating the confidence regions of the parameter estimates and interpret the corresponding correlation and sensitivity matrices. Our results indicate that estimating the model parameters from analytically computed spectral power, we are able to accurately estimate the unknown parameters while avoiding the computational costs due to numerical integration of the model equations.


Parameter estimation Optimization Stochastic differential equation Spectral power General anesthesia 



The authors acknowledge funding from the European Research Council for support under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 257253.

Supplementary material

12021_2018_9369_MOESM1_ESM.pdf (312 kb)
(PDF 312 KB)
12021_2018_9369_MOESM2_ESM.pdf (190 kb)
(PDF 190 KB)
12021_2018_9369_MOESM3_ESM.pdf (153 kb)
(PDF 153 KB)


  1. Aldrich, J. (1997). R. A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science, 12(3), 162–176.CrossRefGoogle Scholar
  2. Almeida, J, & Voit, E. (2003). Neural-network-based parameter estimation in s-system models of biological networks. Genome Informatics, 14, 114–123.PubMedGoogle Scholar
  3. Ashyraliyev, M, Jaeger, J, & Blom, J G. (2008). Parameter estimation and determinability analysis applied to Drosophila gap gene circuits. BMC Systems Biology, 2(1), 83.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ashyraliyev, M, Fomekong-Nanfack, Y, Kaandorp, J A, & Blom, J G. (2009). Systems biology: Parameter estimation for biochemical models: Parameter estimation in systems biology. FEBS Journal, 276(4), 886–902.PubMedCrossRefGoogle Scholar
  5. Banga, J, & Balsa-Canto, E. (2008). Parameter estimation and optimal experimental design. Essays in Biochemistry, 45, 195–210.PubMedCrossRefGoogle Scholar
  6. Bates, D, & Watts, D. (1980). Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, Series B (Methodological), 42(1), 1–25.Google Scholar
  7. Bates, D, & Watts, D. (1988). Nonlinear regression analysis and its applications. Wiley.Google Scholar
  8. Bojak, I, & Liley, D. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041,902.CrossRefGoogle Scholar
  9. Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 20(3), 340–352.PubMedCrossRefGoogle Scholar
  10. Brun, R, Reichert, P, & Kunsch, H. (2001). Practical identifiability analysis of large environmental simulation models. Water Resources Research, 37, 1015–1030.CrossRefGoogle Scholar
  11. Buhry, L, Pace, M, & Saïghi, S. (2012). Global parameter estimation of an hodgkin-huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits. Neurocomputing, 81, 75–85.CrossRefGoogle Scholar
  12. Carpenter, B, Gelman, A, Hoffman, M D, an B Goodrich, D L, Betancourt, M, Brubaker, M, Guo, J, Li, P, & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, 1.CrossRefGoogle Scholar
  13. Corne, D, Dorigo, M, & Glover, F. (1999). New ideas in optimization. New York: McGraw-Hill.Google Scholar
  14. Cuevas, E, Echavarria, A, & Ramirez-Ortegon, M A. (2014). An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Applied Intelligence, 40(2), 256–272.CrossRefGoogle Scholar
  15. Daunizeau, J, Friston, K, & Kiebel, S. (2009). Variational bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D: Nonlinear Phenomena, 238(21), 2089–2118.CrossRefGoogle Scholar
  16. Daunizeau, J, Stephan, K, & Friston, K. (2012). Stochastic dynamic causal modelling of fmri data: Should we care about neural noise? NeuroImage, 62(1), 464–481.PubMedPubMedCentralCrossRefGoogle Scholar
  17. David, O, Kiebel, S J, Harrison, L M, Mattout, J, Kilner, J M, & Friston, K J. (2006). Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage, 30, 1255–1272.PubMedCrossRefGoogle Scholar
  18. Deco, G, Jirsa, V, McIntosh, A, Sporns, O, & Kotter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 106, 10,302–10,307.CrossRefGoogle Scholar
  19. Donaldson, J, & Schnabel, R. (1985). Computational experience with confidence regions and confidence intervals for nonlinear least squares. In Proceedings of 17th symposium on the interface of computer sciences and statistics (pp. 83–93). Kentucky: Lexington.Google Scholar
  20. Draper, N, & Smith, H. (1998). Applied regression analysis. New York: Wiley.CrossRefGoogle Scholar
  21. Faisal, A, Selen, L, & Wolpert, D. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9, 292–303.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fogel, D B. (2000). Evolutionary computation: Toward a new philosophy of machine intelligence. New York: IEEE Press.Google Scholar
  23. Forde, J, & Nelson, P. (2004). Applications of sturm sequences to bifurcation analysis of delay differential equation models. Journal of Mathematical Analysis and Applications, 300, 273–284.CrossRefGoogle Scholar
  24. Friston, K, Harrison, L, & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 273–1302.Google Scholar
  25. Gelman, A, Carlin, J B, Stern, H S, & Rubin, DB. (2004). Bayesian data analysis, texts in statistical science. London: Hall, CRC.Google Scholar
  26. Georgieva, A, & Jordanov, I. (2009). Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. European Journal of Operational Research, 196, 413–422.CrossRefGoogle Scholar
  27. Girolami, M, & Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte carlo methods. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 73
  28. Green, P L, & Worden, K. (2015). Bayesian and markov chain monte carlo methods for identifying nonlinear systems in the presence of uncertainty. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373, 2051.CrossRefGoogle Scholar
  29. Haario, H, Laine, M, Mira, A, & Saksman, E. (2006). Dram: efficient adaptive mcmc.Google Scholar
  30. Hamm, L, Brorsen, B, & Hagan, M. (2007). Comparison of stochastic global optimization methods to estimate neural network weights. Neural Processing Letters, 26, 145–158.CrossRefGoogle Scholar
  31. Hashemi, M, Hutt, A, & Sleigh, J. (2014). Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Journal of Frontiers in Systems Neuroscience, 8, 232.PubMedGoogle Scholar
  32. Hashemi, M, Hutt, A, & Sleigh, J. (2015). How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. Journal of Computational Neuroscience, 39(2), 155–179.PubMedCrossRefGoogle Scholar
  33. Hashemi, M, Hutt, A, Darren, H, & Sleigh, J. (2017). Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLOS ONE, 12(6), 1–29.CrossRefGoogle Scholar
  34. Herrmann, C S, Murray, M, Ionta, S, Hutt, A, & Lefebvre, J. (2016). Shaping intrinsic neural oscillations with periodic stimulation. Journal of Neuroscience, 36(19), 5328–5337.PubMedCrossRefGoogle Scholar
  35. Hutt, A. (2013). The anaesthetic propofol shifts the frequency of maximum spectral power in EEG during general anaesthesia: analytical insights from a linear model. Frontiers in Computational Neuroscience, 7, 2.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hutt, A, & Longtin, A. (2009). Effects of the anesthetic agent propofol on neural populations. Cognitive Neurodynamics, 4(1), 37–59.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hutt, A, Hashemi, M, & beim Graben, P. (2015). How to render neural fields more realistic (pp. 141–159). Springer International Publishing.Google Scholar
  38. Hutt, A, Mierau, A, & Lefebvre, J. (2016). Dynamic control of synchronous activity in networks of spiking neurons. PLoS One, 11(9), e0161,488.CrossRefGoogle Scholar
  39. Ingalls, B. (2008). Sensitivity analysis: from model parameters to system behaviours. Essays in Biochemistry, 45, 177–193.PubMedCrossRefGoogle Scholar
  40. Jirsa, V, Proix, T, Perdikis, D, Woodman, M, Wang, H, Gonzalez-Martinez, J, Bernard, C, Bénar, C, Guye, M, Chauvel, P, & Bartolomei, F. (2017). The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage, 145, 377–388.PubMedCrossRefGoogle Scholar
  41. Kay, S. (1993). Fundamentals of statistical signal processing: estimation theory. Upper Saddle River: Prentice-Hall.Google Scholar
  42. Kell, D. (2004). Metabolomic and systems bilogy: making sense of the soup. Current Opinion in Microbiology, 7(3), 296–307.PubMedCrossRefGoogle Scholar
  43. Kimura, S, Ide, K, Kashihara, A, Kano, M, Hatakeyama, M, Masui, R, Nakagawa, N, Yokoyama, S, Kuramitsu, S, & Konagaya, A. (2005). Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics, 21(7), 1154–1163.PubMedCrossRefGoogle Scholar
  44. Kimura, A, Celani, A, Nagao, H, Stasevich, T, & Nakamura, K. (2015). Estimating cellular parameters through optimization procedures: elementary principles and applications. Frontiers in Physiology, 6, 60.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kitano, H. (2002). Computational systems biology. Nature, 420(6912), 206–210.PubMedCrossRefGoogle Scholar
  46. Kramer, A, Calderhead, B, & Radde, N. (2014). Hamiltonian monte carlo methods for efficient parameter estimation in steady state dynamical systems. BMC Bioinformatics, 15(1), 253.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lera, D, & Dergeyev, Y. (2010). Lipschitz and holder global optimization using space-filling curves. Applied Numerical Mathematics, 60, 115–129.CrossRefGoogle Scholar
  48. Li, P, & Vu, Q D. (2013). Identification of parameter correlations for parameter estimation in dynamic biological models. BMC Systems Biology, 7, 91.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Liang, C, & Lord, G. (2010). Stochastic methods in neuroscience. Oxford Univ. Press.Google Scholar
  50. Lillacci, G, & Khammash, M. (2010). Parameter estimation and model selection in computational biology. PLoS Computational Biology, 6(3), e1000,696.CrossRefGoogle Scholar
  51. Ljung, L. (1999). System identification: theory for the user. Englewood Cliffs: Prentice Hall.CrossRefGoogle Scholar
  52. Marsili-Libelli, S, Guerrizio, S, & Checchi, N. (2003). Confidence regions of estimated parameters for ecological systems. Ecological Modelling, 165, 127–146.CrossRefGoogle Scholar
  53. Masoliver, J, & Porrá, J. (1993). Harmonic oscillators driven by colored noise: crossovers, resonances, and spectra. Physical Review E, 48(6), 4309–4319.CrossRefGoogle Scholar
  54. Mendes, P, & Kell, D. (1998). Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics (Oxford England), 14(10), 869–883.CrossRefGoogle Scholar
  55. Moles, C G, Mendes, P, & Banga, J R. (2003). Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome research, 13(11), 2467–2474.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Myung, I J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1), 90–100.CrossRefGoogle Scholar
  57. Nunez, P, & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG. New York - Oxford: Oxford University Press.CrossRefGoogle Scholar
  58. Øksendal, B. (2007). Stochastic differential equations an introduction with applications. Berlin: Springer-Verlag.Google Scholar
  59. Ostwald, D, & Starke, L. (2016). Probabilistic delay differential equation modeling of event-related potentials. NeuroImage, 136, 227–257.PubMedCrossRefGoogle Scholar
  60. Ostwald, D, Kirilina, E, Starke, L, & Blankenburg, F. (2014). A tutorial on variational bayes for latent linear stochastic time-series models. Journal of Mathematical Psychology, 60, 1–19.CrossRefGoogle Scholar
  61. Papamichail, I, & Adjiman, C. (2004). Global optimization of dynamic systems. Computers & Chemical Engineering, 28(3), 403–415.CrossRefGoogle Scholar
  62. Pardalos, P M, Romeijn, H E, & Tuy, H. (2000). Recent developments and trends in global optimization. Journal of Computational and Applied Mathematics, 124(1), 209–228.CrossRefGoogle Scholar
  63. Patil, A, Huard, D, & Fonnesbeck, CJ. (2010). Pymc: Bayesian stochastic modelling in python. Journal of Statistical Software.Google Scholar
  64. Penny, W. (2012). Comparing dynamic causal models using aic, bic and free energy. NeuroImage, 59(1), 319–330.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pinotsis, D, Moran, R, & Friston, K. (2012). Dynamic causal modeling with neural fields. NeuroImage, 59 (2), 1261–1274.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Prasad, J, & Souradeep, T. (2012). Cosmological parameter estimation using particle swarm optimization. Physical Review D, 85(12), 123,008.CrossRefGoogle Scholar
  67. Quaiser, T, & Monnigmann, M. (2009). Systematic identifiability testing for nambiguous mechanistic modeling - application to JAK-STAT, MAP kinase, and NF-kB signaling pathway models. BMC Systems Biology, 3, 50.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Rateitschak, K, Winter, F, Lange, F, Jaster, R, & Wolkenhaue, O. (2012). Parameter identifiability and sensitivity analysis predict targets for enhancement of STAT1 activity in pancreatic cancer and stellate cells. PLoS Computational Biology, 8, 12.CrossRefGoogle Scholar
  69. Raue, A, Kreutz, C, Maiwald, T, Bachmann, J, Schilling, M, & Timmer, U K J. (2009). Structural and practical identifiability analysis of partially observable dynamical models by exploiting the profile likelihood. Bioinformatics, 25, 1923–1929.PubMedCrossRefGoogle Scholar
  70. Raue, A, Kreutz, C, Maiwald, T, Klingmuller, U, & Timmer, J. (2011). Addressing parameter identifiability by model-based experimentation. IET Systems Biology, 5(2), 120.PubMedCrossRefGoogle Scholar
  71. Rawlings, J, Pantula, S, & DA, D. (1998). Applied regression analysis: a research tool. New York: Springer-Verlag.CrossRefGoogle Scholar
  72. Razi, A, Kahan, J, Rees, G, & Friston, K J. (2015). Construct validation of a dcm for resting state fmri. NeuroImage, 106, 1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rennie, C, Robinson, P, & Wright, J. (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biological Cybernetics, 86, 457–471.PubMedCrossRefGoogle Scholar
  74. Risken, H. (1984). The Fokkerr-Planck equation. Berlin: Springer.CrossRefGoogle Scholar
  75. Risken, H. (1996). The Fokker-Planck equation: methods of solutions and applications. New York: Springer-Verlag.CrossRefGoogle Scholar
  76. Robinson, P, Rennie, C, Wright, J, Bahramali, H, Gordon, E, & Rowe, D. (2001a). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 63, 201,903.Google Scholar
  77. Robinson, P, Loxley, P, & Rennie, S C. (2001b). Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Physical Review E, 63, 041,909.Google Scholar
  78. Robinson, P, Rennie, C, & Rowe, D. (2002). Dynamics of large-scale brain activity in normal arousal states and eplieptic seizures. Physical Review E, 65(4), 041,924.CrossRefGoogle Scholar
  79. Rodriguez-Fernandez, M, Egea, JA, & Banga, JR. (2006a). Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics, 7, 483.Google Scholar
  80. Rodriguez-Fernandez, M, Mendes, P, & Banga, JR. (2006b). A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems, 83, 248–265.Google Scholar
  81. Rodriguez-Fernandez, M, Rehberg, M, Kremling, A, & Banga, J R. (2013). Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems. BMC Systems Biology, 7(1), 76.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rowe, D, Robinson, P, & Rennie, C. (2004). Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. Journal of Theoretical Biology, 231(3), 413–433.PubMedCrossRefGoogle Scholar
  83. Schmeink, K, Adam, R, & Hoeher, P A. (2011). Joint communication and positioning based on soft channel parameter estimation. EURASIP Journal on Wireless Communications and Networking, 185.Google Scholar
  84. Schwaab, M, Biscaia, JrE C, Monteiro, J L, & Pinto, J C. (2008). Nonlinear parameter estimation through particle swarm optimization. Chemical Engineering Science, 63(6), 1542–1552.CrossRefGoogle Scholar
  85. Seber, G, & Wild, C. (1997). Non linear regression. New York: Wiley.Google Scholar
  86. Sleigh, J W, Leslie, K, & Voss, L. (2010). The effect of skin incision on the electroencephalogram during general anesthesia maintained with propofol or desflurane. Journal of Clinical Monitoring and Computing, 24(4), 307–318.PubMedCrossRefGoogle Scholar
  87. Stelling, J. (2004). Mathematical models in microbial systems biology. Current Opinion in Microbiology, 7(5), 513–518.PubMedCrossRefGoogle Scholar
  88. Svensson, C M, Coombes, S, & Peirce, J W. (2012). Using evolutionary algorithms for fitting high-dimensional models to neuronal data. Neuroinformatics, 10(2), 199–218.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tashkova, K, Korosec, P, Silc, J, Todorovski, L, & Dzeroski, S. (2011). Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis. BMC Systems Biology, 5(1), 159.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tsai, K Y, & Wang, F S. (2005). Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics, 21(7), 1180–1188.PubMedCrossRefGoogle Scholar
  91. Van Albada, S, Kerr, C, Robinson, P, Chiang, A, & Rennie, C. (2010). Neurophysiological changes with age probed by inverse modeling of eeg spectra. Clinical Neurophysiology, 121, 21–38.PubMedCrossRefGoogle Scholar
  92. van Riel, N A. (2006). Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Briefings in Bioinformatics, 7(4), 364–374.PubMedCrossRefGoogle Scholar
  93. Victor, J, Drover, J, Conte, M, & Schiff, N. (2011). Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proceedings of the National Academy of Sciences of the United States of America, 118, 15,631–15,638.CrossRefGoogle Scholar
  94. Villaverde, A F, & Banga, J. (2013). Reverse engineering and identification in systems biology: strategies, perspectives and challenges. Journal of The Royal Society Interface, 11, 91.CrossRefGoogle Scholar
  95. Voit, E, & Almeida, J. (2004). Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformativs, 20, 1670–1681.CrossRefGoogle Scholar
  96. Walter, E, & Pronzato, L. (1997). Identification of parametric models from experimental data. Springer.Google Scholar
  97. Wang, M, & Uhlenbeck, G. (1945). On the theory of the brownian motion. Physical Review Modelling, 17(2), 323.CrossRefGoogle Scholar
  98. Wilkinson, D. (2011). Stochastic modelling for systems biology, 2nd edn. CRC Press.Google Scholar
  99. Zhan, C, & Yeung, L F. (2011). Parameter estimation in systems biology models using spline approximation. BMC Systems Biology, 5(1), 14.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models. IET System Biology, 5(6), 458–469.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Meysam Hashemi
    • 1
    Email author
  • Axel Hutt
    • 2
    • 3
  • Laure Buhry
    • 4
    • 5
    • 6
  • Jamie Sleigh
    • 7
  1. 1.INSERM, INS, Institut de Neurosciences des SystèmesAix Marseille UniversitéMarseilleFrance
  2. 2.German Meteorology ServiceOffenbach am MainGermany
  3. 3.Department of Mathematics and StatisticsUniversity of ReadingReadingUK
  4. 4.INRIA Grand Est - Nancy, Team NEUROSYS, 615 rue du Jardin BotaniqueVillers-lès-NancyFrance
  5. 5.CNRS, Loria, UMR nō 7503Vandoeuvre-lès-NancyFrance
  6. 6.Université de Lorraine, Loria, UMR nō 7503Vandoeuvre-lès-NancyFrance
  7. 7.University of AucklandHamiltonNew Zealand

Personalised recommendations