Advertisement

Neuroinformatics

, Volume 16, Issue 3–4, pp 403–410 | Cite as

Decreased Cerebral Blood Flow in Mesial Thalamus and Precuneus/PCC during Midazolam Induced Sedation Assessed with ASL

  • Peipeng Liang
  • Yachao Xu
  • Fei Lan
  • Daqing Ma
  • Kuncheng Li
Original Article
  • 115 Downloads

Abstract

While some previous work suggests that midazolam-induced light sedation results from the functional disconnection within resting state network, little is known about the underlying alterations of cerebral blood flow (CBF) associated with its effects. A randomized, double-blind, within-subject, cross-over design was adopted, while 12 healthy young volunteers were scanned with arterial spin-labeling (ASL) perfusion MRI both before and after an injection of either saline or midazolam. The contrast of MRI signal before and after midazolam administration revealed the CBF decrease in the bilateral mesial thalamus and precuneus/posterior cingulate cortex (PCC). These effects were confirmed after controlling for any effect of injection as well as head motions. These findings provide new evidences that midazolam-induced light sedation is related to the disruption of cortical functional integration, and have new implications to the neural basis of consciousness.

Keywords

Arterial spin labeling (ASL) Magnetic resonance imaging (MRI) Midazolam Sedation 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 61473196) and Beijing Talents foundation (2016000021223TD07). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We’d like to thank Dr. Xiaoxuan He in assisting the data analysis.

Compliance with Ethical Standards

Conflict of Interest

All authors declare no conflict of interest.

References

  1. Alkire, M. T., Haier, R. J., Shah, N. K., & Anderson, C. T. (1997). Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology, 86, 549–557.CrossRefPubMedGoogle Scholar
  2. Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322, 876–880.CrossRefPubMedGoogle Scholar
  3. Arend, I., Rafal, R., & Ward, R. (2008). Spatial and temporal deficits are regionally dissociable in patients with pulvinar lesions. Brain, 131(8), 2140–2152.CrossRefPubMedGoogle Scholar
  4. Birn, R. M., Smith, M. A., Jones, T. B., & Bandettini, P. A. (2008). The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage, 40, 644–654.CrossRefPubMedGoogle Scholar
  5. Boveroux, P., Vanhaudenhuyse, A., Bruno, M. A., Noirhomme, Q., Lauwick, S., Luxen, A., et al. (2010). Breakdown of within- and betweennetwork resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology, 113, 1038–1053.Google Scholar
  6. Chernik, D. A., Gillings, D., Laine, H., Hendler, J., Silver, J. M., Davidson, A. B., et al. (1990). Validity and reliability of the observer’s assessment of alertness/sedation scale: Study with intravenous midazolam. Journal of Clinical Psychopharmacology, 10, 244–251.Google Scholar
  7. Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., et al. (1999). Brain mechanisms of propofol-induced loss of consciousness in humans: A positron emission tomographic study. The Journal of Neuroscience, 19, 5506–5513.CrossRefPubMedGoogle Scholar
  8. Franks, N. P. (2008). General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nature Reviews. Neuroscience, 9, 370–386.CrossRefPubMedGoogle Scholar
  9. Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionpää, V., Alahuhta, S., Reiss, A. L., & Menon, V. (2008). Persistent default-mode network connectivity during light sedation. Human Brain Mapping, 29, 839–847.CrossRefPubMedGoogle Scholar
  10. Guldenmund, P., Demertzi, A., Boveroux, P., Boly, M., Vanhaudenhuyse, A., Bruno, M. A., Gosseries, O., Noirhomme, Q., Brichant, J. F., Bonhomme, V., Laureys, S., & Soddu, A. (2013). Thalamus, brainstem and salience network connectivity changes during propofolinduced sedation and unconsciousness. Brain Connectivity, 3, 273–285.CrossRefPubMedGoogle Scholar
  11. Johnston, A. J., Steiner, L. A., Chatfield, D. A., Coleman, M. R., Coles, J. P., et al. (2003). Effects of propofol on cerebral oxygenation and metabolism after head injury. British Journal of Anaesthesia, 91, 781–786.CrossRefPubMedGoogle Scholar
  12. Jordan, D., Ilg, R., Riedl, V., Schorer, A., Grimberg, S., Neufang, S., et al. (2013). Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness. Anesthesiology, 119, 1031–1042.CrossRefPubMedGoogle Scholar
  13. Kaisti, K. K., Metsähonkala, L., Teräs, M., Oikonen, V., Aalto, S., Jääskeläinen, S., Hinkka, S., & Scheinin, H. (2002). Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology, 96(6), 1358–1370.CrossRefPubMedGoogle Scholar
  14. Kim, S. G., & Duong, T. Q. (2002). Mapping cortical columnar structures using fMRI. Physiology & Behavior, 77, 641–644.CrossRefGoogle Scholar
  15. Kiviniemi, V. J., Haanpää, H., Kantola, J. H., Jauhiainen, J., Vainionpää, V., Alahuhta, S., & Tervonen, O. (2005). Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magnetic Resonance Imaging, 23, 531–537.CrossRefPubMedGoogle Scholar
  16. Långsjö, J. W., Maksimow, A., Salmi, E., Kaisti, K., Aalto, S., Oikonen, V., Hinkka, S., Aantaa, R., Sipilä, H., Viljanen, T., Parkkola, R., & Scheinin, H. (2005). S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology, 103(2), 258–268.CrossRefPubMedGoogle Scholar
  17. Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, and related disorders. Lancet Neurology, 3, 537–546.CrossRefPubMedGoogle Scholar
  18. Liang, P., Manelis, A., Liu, X., Aizenstein, H. J., Gyulai, F., Quinlan, J. J., & Reder, L. M. (2012). Using arterial spin labeling perfusion MRI to explore how midazolam produces anterograde amnesia. Neuroscience Letters, 522, 113–117.CrossRefPubMedGoogle Scholar
  19. Liang, P., Zhang, H., Xu, Y., Jia, W., Zang, Y., & Li, K. (2015). Disruption of cortical integration during midazolam-induced light sedation. Human Brain Mapping, 36(11), 4247–4261.CrossRefPubMedGoogle Scholar
  20. Liu, T. T., & Brown, G. G. (2007). Measurement of cerebral perfusion with arterial spin labeling: Part 1. Methods. Journal of the International Neuropsychological Society, 13, 517–525.CrossRefPubMedGoogle Scholar
  21. MacDonald, A. A., Naci, L., MacDonald, P. A., & Owen, A. M. (2015). Anesthesia and neuroimaging: Investigating the neural correlates of unconsciousness. Trends in Cognitive Science, 19, 100–107.CrossRefGoogle Scholar
  22. Nyhus, E., & Curran, T. (2012). Midazolam-induced amnesia reduces memory for details and affects the ERP correlates of recollection and familiarity. Journal of Cognitive Neuroscience, 24, 416–427.CrossRefPubMedGoogle Scholar
  23. Park, H., Quinlan, J., Thornton, E., & Reder, L. M. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. Proceedings of the National Academy of Sciences of the United States of America, 101, 17879–17883.CrossRefPubMedGoogle Scholar
  24. Reder, L. M., Oates, J. M., Thornton, E. R., Quinlan, J. J., Kaufer, A., & Sauer, J. (2006). Drug induced amnesia hurts recognition, but only for memories that can be unitized. Psychology Science, 17, 562–567.CrossRefGoogle Scholar
  25. Schlunzen, L., Vafaee, M. S., Cold, G. E., Rasmussen, M., Nielsen, J. F., & Gjedde, A. (2004). Effects of subanaesthetic and anaesthetic doses of sevoflurane on regional cerebral blood flow in healthy volunteers. A positron emission tomographic study. Acta Anaesthesiologica Scandinavica, 48, 1268–1276.CrossRefPubMedGoogle Scholar
  26. Shmueli, K., van Gelderen, P., de Zwart, J. A., Horovitz, S. G., Fukunaga, M., Jansma, J. M., & Duyn, J. H. (2007). Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. NeuroImage, 38, 306–320.CrossRefPubMedGoogle Scholar
  27. Veselis, R. A., Reinsel, R. A., Beattie, B. J., et al. (1997). Midazolam changes cerebral blood flow in discrete brain regions. An H215O positron emission tomography study. Anesthesiology, 87, 1106–1117.CrossRefPubMedGoogle Scholar
  28. Veselis, R. A., Feshchenko, V. A., Reinsel, R. A., Dnistrian, A. M., Beattie, B., & Akhurst, T. J. (2004). Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesthesia and Analgesia, 99, 399–408.PubMedGoogle Scholar
  29. Veselis, R. A., Feshchenko, V. A., Reinsel, R. A., Beattie, B., & Akhurst, T. J. (2005). Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations. Anesthesiology, 102(1), 26–34.CrossRefPubMedGoogle Scholar
  30. Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2003). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49, 796–802.CrossRefPubMedGoogle Scholar
  31. Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2004). Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 tesla. Magnetic Resonance Imaging, 22, 1–7.CrossRefPubMedGoogle Scholar
  32. Wang, J., Zhang, Y., Wolf, R. L., Roc, A. C., Alsop, D. C., & Detre, J. A. (2005). Amplitude modulated continuous arterial spin labeling perfusion MR with single coil at 3T-feasibility. Radiology, 235, 218–228.CrossRefPubMedGoogle Scholar
  33. Wang, Z., Aguirre, G. K., Rao, H., Wang, J., Fernández-Seara, M. A., Childress, A. R., & Detre, J. A. (2008). Empirical ASL data analysis using an ASL data processing toolbox: ASLtbx. Magnetic Resonance Imaging, 26, 261–269.CrossRefPubMedGoogle Scholar
  34. Xie, G., et al. (2011). Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: A positron emission tomography study. British Journal of Anaesthesia, 106(4), 548–557.CrossRefPubMedGoogle Scholar
  35. Young, A. B., & Chu, D. (1990). Distribution of GABAA and GABAB receptors in mammalian brain: Potential targets for drug development. Drug Development Research, 21, 161–167.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology, Xuanwu HospitalCapital Medical UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
  3. 3.Department of Anesthesiology, Xuanwu HospitalCapital Medical UniversityBeijingChina
  4. 4.Anaesthetcis, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College LondonChelsea & Westminster HospitalLondonUK

Personalised recommendations