Advertisement

Neuronal Activities in the Mouse Visual Cortex Predict Patterns of Sensory Stimuli

Original Article

Abstract

Visual cortex forms the basis of visual processing and plays important roles in visual encoding. By using the recently published Allen Brain Observatory dataset consisting of large-scale calcium imaging of mouse V1 activities under visual stimuli, we were able to obtain high-quality data capturing simultaneous neuronal activities at multiple sub-areas and cortical depths of V1. Using prediction models, we analyzed the activity profiles related to static and drifting grating stimuli. We conducted a comprehensive survey of the coding ability of multiple cortical locations toward different stimulus attributes. Specifically, we focused on orientations and spatial frequencies (for static stimuli), as well as moving directions and speed (for drifting stimuli). By using results produced from a prediction model, we quantified the decoding performance profile at different sub-areas and layers of V1. In addition, we analyzed the interactions and interference between different stimulus attributes. The insights obtained from these discoveries would contribute to more precise and quantitative understanding of V1 coding mechanisms.

Keywords

Neural activity Sensory stimuli Visual coding Allen brain observatory Prediction 

Notes

Acknowledgements

This work was supported in part by National Science Foundation grants DBI-1641223 and IIS-1615035, and by Washington State University. We thank the Allen Institute for Brain Science for making the Allen Brain Observatory data publicly available.

References

  1. Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area mt of the macaque. Journal of neurophysiology, 52(6), 1106–1130.CrossRefPubMedGoogle Scholar
  2. Allen Brain Observatory. (2016). Technical White Paper: Overview.Google Scholar
  3. Allen Brain Observatory. (2016). Technical Whitepaper: Stimulus Set And Response Analysis.Google Scholar
  4. Allen Institute for Brain Science. (2016). Allen Brain Observatory [Internet]. http://observatory.brain-map.org/.
  5. Andermann, M.L., Kerlin, A.M., Roumis, D.K., Glickfeld, L.L., Reid, R.C. (2011). Functional specialization of mouse higher visual cortical areas. Neuron, 72(6), 1025–1039.CrossRefPubMedGoogle Scholar
  6. Bethge, M., & Kayser, C. (2007). Do we know what the early visual system computes?. In 31st Göttingen Neurobiology Conference.Google Scholar
  7. Cadieu, C.F., Hong, H., Yamins, D.L., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J. (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS Computational Biology, 10(12), e1003,963.CrossRefGoogle Scholar
  8. Coogan, T.A., & Burkhalter, A. (1993). Hierarchical organization of areas in rat visual cortex. The Journal of neuroscience, 13(9), 3749–3772.PubMedGoogle Scholar
  9. David, S.V., Vinje, W.E., Gallant, J.L. (2004). Natural stimulus statistics alter the receptive field structure of v1 neurons. The Journal of Neuroscience, 24(31), 6991–7006.CrossRefPubMedGoogle Scholar
  10. Fakhry, A., & Ji, S. (2015). High-resolution prediction of mouse brain connectivity using gene expression patterns. Methods, 73, 71–78.CrossRefPubMedGoogle Scholar
  11. Fakhry, A., Zeng, T., Peng, H., Ji, S. (2015). Global analysis of gene expression and projection target correlations in the mouse brain. Brain Informatics, 2(2), 107–117.CrossRefPubMedPubMedCentralGoogle Scholar
  12. French, L., & Pavlidis, P. (2011). Relationships between gene expression and brain wiring in the adult rodent brain. PLOS Computational Biology, 7(1), e1001,049.CrossRefGoogle Scholar
  13. Garrett, M.E., Nauhaus, I., Marshel, J.H., Callaway, E.M. (2014). Topography and areal organization of mouse visual cortex. The Journal of Neuroscience, 34(37), 12,587–12,600.CrossRefGoogle Scholar
  14. Girman, S.V., Sauvé, Y., Lund, R.D. (1999). Receptive field properties of single neurons in rat primary visual cortex. Journal of neurophysiology, 82(1), 301–311.CrossRefPubMedGoogle Scholar
  15. Gray, C.M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences, 86(5), 1698–1702.CrossRefGoogle Scholar
  16. Greenberg, D.S., Houweling, A.R., Kerr, J.N. (2008). Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature neuroscience, 11(7), 749–751.CrossRefPubMedGoogle Scholar
  17. Haynes, J.D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature neuroscience, 8(5), 686–691.CrossRefPubMedGoogle Scholar
  18. Hinton, G.E., & Roweis, S.T. (2003). Stochastic neighbor embedding. In Advances in Neural Information Processing Systems 15 (pp. 857–864).Google Scholar
  19. Hubel, D.H., & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215–243.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ji, S. (2011). Computational network analysis of the anatomical and genetic organizations in the mouse brain. Bioinformatics, 27(23), 3293–3299.CrossRefPubMedGoogle Scholar
  21. Ji, S. (2013). Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering. BMC Bioinformatics, 14, 222.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ji, S., Fakhry, A., Deng, H. (2014). Integrative analysis of the connectivity and gene expression atlases in the mouse brain. NeuroImage, 84(1), 245–253.CrossRefPubMedGoogle Scholar
  23. Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature neuroscience, 8(5), 679–685.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kirsch, L., & Chechik, G. (2016). On expression patterns and developmental origin of human brain regions. PLOS Computational Biology, 12(8), e1005,064.CrossRefGoogle Scholar
  25. Kirsch, L., Liscovitch, N., Chechik, G. (2012). Localizing genes to cerebellar layers by classifying ish images. PLOS Computational Biology, 8(12), e1002,790.CrossRefGoogle Scholar
  26. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.CrossRefPubMedGoogle Scholar
  27. Liscovitch, N., & Chechik, G. (2013). Specialization of gene expression during mouse brain development. PLOS Computational Biology, 9(9), e1003,185.CrossRefGoogle Scholar
  28. Logothetis, N.K., & Sheinberg, D.L. (1996). Visual object recognition. Annual review of neuroscience, 19(1), 577–621.CrossRefPubMedGoogle Scholar
  29. Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas v1, v2, and v4 of macaque visual cortex. Journal of neurophysiology, 77(1), 24– 42.CrossRefPubMedGoogle Scholar
  30. Maaten, L.V.D., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9, 2579–2605.Google Scholar
  31. Mangini, N.J., & Pearlman, A.L. (1980). Laminar distribution of receptive field properties in the primary visual cortex of the mouse. The Journal of comparative neurology, 193(1), 203–222.CrossRefPubMedGoogle Scholar
  32. Marshel, J.H., Garrett, M.E., Nauhaus, I., Callaway, E.M. (2011). Functional specialization of seven mouse visual cortical areas. Neuron, 72(6), 1040–1054.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Niell, C.M. (2011). Exploring the next frontier of mouse vision. Neuron, 72(6), 889–892.CrossRefPubMedGoogle Scholar
  34. Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., et al. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292(5516), 510–512.CrossRefPubMedGoogle Scholar
  36. Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of machine learning research, 5, 101–141.Google Scholar
  37. Rust, N.C., & DiCarlo, J.J. (2010). Selectivity and tolerance (invariance) both increase as visual information propagates from cortical area v4 to it. The Journal of Neuroscience, 30(39), 12,978–12,995.CrossRefGoogle Scholar
  38. Saleem, A.B., Ayaz, A., Jeffery, K.J., Harris, K.D., Carandini, M. (2013). Integration of visual motion and locomotion in mouse visual cortex. Nature Neuroscience, 16(12), 1864–1869.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Saproo, S., & Serences, J.T. (2014). Attention improves transfer of motion information between v1 and mt. The Journal of Neuroscience, 34(10), 3586–3596.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schiller, P.H., Finlay, B.L., Volman, S.F. (1976). Quantitative studies of single-cell properties in monkey striate cortex. ii. orientation specificity and ocular dominance. Journal of neurophysiology, 39(6), 1320–1333.CrossRefPubMedGoogle Scholar
  41. Serre, T., Wolf, L., Poggio, T. (2005). Object recognition with features inspired by visual cortex. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (Vol. 2, pp. 994–1000): IEEE.Google Scholar
  42. Sheth, B.R., Sharma, J., Rao, S.C., Sur, M. (1996). Orientation maps of subjective contours in visual cortex. Science, 274(5295), 2110.CrossRefPubMedGoogle Scholar
  43. Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences, 100(12), 7319–7324.CrossRefGoogle Scholar
  44. Takemura, H., & Murakami, I. (2010). Visual motion detection sensitivity is enhanced by an orthogonal motion aftereffect. Journal of vision, 10(11), 7–7.CrossRefPubMedGoogle Scholar
  45. Teich, A.F., & Qian, N. (2006). Comparison among some models of orientation selectivity. Journal of neurophysiology, 96(1), 404–419.CrossRefPubMedGoogle Scholar
  46. Vogels, R., & Orban, G. (1994). Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. Journal of Neurophysiology, 71(4), 1428–1451.CrossRefPubMedGoogle Scholar
  47. Wolf, L., Goldberg, C., Manor, N., Sharan, R., Ruppin, E. (2011). Gene expression in the rodent brain is associated with its regional connectivity. PLOS Computational Biology, 7(5), e1002,040.CrossRefGoogle Scholar
  48. Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., DiCarlo, J.J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619–8624.CrossRefGoogle Scholar
  49. Yan, C., Zhang, Y., Xu, J., Dai, F., Li, L., Dai, Q., Wu, F. (2014). A highly parallel framework for hevc coding unit partitioning tree decision on many-core processors. IEEE Signal Processing Letters, 21(5), 573–576.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceWashington State UniversityPullmanUSA

Personalised recommendations