, Volume 16, Issue 1, pp 43–49 | Cite as

NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction

Software Original Article


The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.


Cloud computing Morphometry Age prediction Software as a service 



The NAPR project was supported by FACES (Finding a Cure for Epilepsy and Seizures) and Amazon Web Services Cloud Credits for Research.

Supplementary material

12021_2017_9346_MOESM1_ESM.xlsx (44 kb)
ESM 1 (XLSX 43 kb)


  1. Alexander-Bloch, A., Clasen, L., Stockman, M., Ronan, L., Lalonde, F., Giedd, J., et al. (2016). Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo mri. Hum Brain Mapp, 37, 2385–2397. Scholar
  2. Belsky, D. W., Caspi, A., Houts, R., Cohen, H. J., Corcoran, D. L., Danese, A., et al. (2015). Quantification of biological aging in young adults. Proc Natl Acad Sci, 112, E4104–E4110. Scholar
  3. Chee, M. W. L., Zheng, H., Goh, J. O. S., Park, D., & Sutton, B. P. (2011). Brain structure in young and old east asians and westerners: Comparisons of structural volume and cortical thickness. J Cogn Neurosci, 23, 1065–1079.CrossRefPubMedGoogle Scholar
  4. Cole, J. H., Annus, T., Wilson, L. R., Remtulla, R., Hong, Y. T., Fryer, T. D., et al. (2017a). Brain-predicted age in down syndrome is associated with beta amyloid deposition and cognitive decline. Neurobiol Aging, 56, 41–49.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cole J.H., Poudel R.P.K., Tsagkrasoulis D., Caan M.W.A., Steves C., Spector T.D., et al. (2017b) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage.
  6. Cole, J. H., Ritchie, S. J., Bastin, M. E., Valdes Hernandez, M. C., Munoz Maniega, S., Royle, N., et al. (2017c). Brain age predicts mortality. Mol Psychiatry.
  7. Cole J.H., Leech R., Sharp D.J., Alzheimer's Disease Neuroimaging Initiative (2015). Prediction of brain age suggests accelerated atrophy after traumatic brain injury, Annals of Neurology. 77(4):571–581.
  8. R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing Scholar
  9. Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry, 19, 659–667.CrossRefPubMedGoogle Scholar
  10. Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358–1361.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A, 97, 11050–11055.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Franke, K., Ziegler, G., Klöppel, S., & Gaser, C. (2010). Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage, 50, 883–892. Scholar
  13. Franke, K., Luders, E., May, A., Wilke, M., & Gaser, C. (2012). Brain maturation: Predicting individual brainage in children and adolescents using structural MRI. NeuroImage, 63, 1305–1312. Scholar
  14. Franke, K., Ristow, M., & Gaser, C. (2014). Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects. Front Aging Neurosci, 6, 94. Scholar
  15. Gaser, C., Franke, K., Kloppel, S., Koutsouleris, N., & Sauer, H. (2013). BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer’s disease. PLoS One, 8, e67346.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gorgolewski, K., Burns, C., Madison, C., Clark, D., Halchenko, Y., Waskom, M., et al. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics., 5, 13. Scholar
  17. Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data, 3, 160044.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capot, M., Chakravarty, M. M., et al. (2017). BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Comput Biol, e1005209, 13.Google Scholar
  19. Halchenko, Y., & Hanke, M. (2012). Open is not enough. let’s take the next step: An integrated, community-driven computing platform for neuroscience. Frontiers in Neuroinformatics, 6, 22. Scholar
  20. Im, K., Lee, J. M., Lee, J., Shin, Y. W., Kim, I. Y., Kwon, J. S., et al. (2006). Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. NeuroImage, 31, 31–38.CrossRefPubMedGoogle Scholar
  21. Karatzoglou A, Smola A, Hornik K, Zeileis A. (2004) Kernlab-an s4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20Google Scholar
  22. Kennedy, D. N., Haselgrove, C., Riehl, J., Preuss, N., & Buccigrossi, R. (2015). The three NITRCs: A guide to neuroimaging Neuroinformatics resources. Neuroinformatics, 13, 383–386.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Koolschijn, P. C., & Crone, E. A. (2013). Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci, 5, 106–118.CrossRefPubMedGoogle Scholar
  24. Koutsouleris, N., Davatzikos, C., Borgwardt, S., Gaser, C., Bottlender, R., Frodl, T., et al. (2013). Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders. Schizophr Bull.
  25. Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., et al. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage, 148, 179–188. Scholar
  26. Luders, E., Cherbuin, N., & Gaser, C. (2016). Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners. NeuroImage, 134, 508–513.CrossRefPubMedGoogle Scholar
  27. Luo, X. Z., Kennedy, D. N., & Cohen, Z. (2009). Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement. Neuroinformatics, 7, 55–56.CrossRefPubMedGoogle Scholar
  28. Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., et al. (2016). Multimodal population brain imaging in the UK biobank prospective epidemiological study. Nat Neurosci, 19, 1523–1536.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nooner, K., Colcombe, S., Tobe, R., Mennes, M., Benedict, M., Moreno, A., et al. (2012). The nki-rockland sample: A model for accelerating the pace of discovery science in psychiatry. Front Neurosci, 6, 152. Scholar
  30. Ooms, J. (2014) The opencpu system: Towards a universal interface for scientific computing through separation of concerns. eprint arXiv:1406.4806Google Scholar
  31. Pardoe, H. R., Hiess, R. K., & Kuzniecky, R. (2016). Motion and morphometry in clinical and nonclinical populations. NeuroImage, 135, 177–185. Scholar
  32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in python. J Mach Learn Res, 12, 2825–2830.Google Scholar
  33. Rasmussen, C.E., Williams C.K.I. (2005) Gaussian processes for machine learning (adaptive computation and machine learning). p. 266 London: The MIT Press.Google Scholar
  34. Reuter, M., Tisdall, M. D., Qureshi, A., Buckner, R. L., Kouwe, A. J., & van der Fischl, B. (2015). Head motion during {mri} acquisition reduces gray matter volume and thickness estimates. NeuroImage, 107, 107–115. CrossRefPubMedGoogle Scholar
  35. Rodrigue, K. M., Kennedy, K. M., Devous, M. D., Rieck, J. R., Hebrank, A. C., Diaz-Arrastia, R., et al. (2012). β-amyloid burden in healthy aging: Regional distribution and cognitive consequences. Neurology, 78, 387–395.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Savalia, N. K., Agres, P. F., Chan, M. Y., Feczko, E. J., Kennedy, K. M., & Wig, G. S. (2017). Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion. Hum Brain Mapp, 38, 472–492. Scholar
  37. Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., et al. (2013). PRoNTo: Pattern recognition for neuroimaging toolbox. Neuroinformatics, 11, 319–337.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., et al. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex, 17, 1550–1560.CrossRefPubMedGoogle Scholar
  39. Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. J Mach Learn Res, 1, 211–244.Google Scholar
  40. Tustison, N. J., Cook, P. A., Klein, A., Song, G., Das, S. R., Duda, J. T., et al. (2014). Large-scale evaluation of ants and freesurfer cortical thickness measurements. NeuroImage, 99, 166–179. Scholar
  41. Zuo, X. N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J., et al. (2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data., 1, 140049.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Comprehensive Epilepsy CenterNew York University School of MedicineNew YorkUSA

Personalised recommendations