Soma Detection in 3D Images of Neurons using Machine Learning Technique

  • Guan-Wei He
  • Ting-Yuan Wang
  • Ann-Shyn Chiang
  • Yu-Tai Ching
Original Article

Abstract

Computing and analyzing the neuronal structure is essential to studying connectome. Two important tasks for such analysis are finding the soma and constructing the neuronal structure. Finding the soma is considered more important because it is required for some neuron tracing algorithms. We describe a robust automatic soma detection method developed based on the machine learning technique. Images of neurons were three-dimensional confocal microscopic images in the FlyCircuit database. The testing data were randomly selected raw images that contained noises and partial neuronal structures. The number of somas in the images was not known in advance. Our method tries to identify all the somas in the images. Experimental results showed that the method is efficient and robust.

Keywords

Soma detection Machine learning method Drosophila 

Notes

Acknowledgments

We thank the staff of the National Center for High-Performance Computing, Hsinchu, Taiwan, for their help with data maintenance. This work was supported by a grant from Ministry of Science and Technology of Taiwan (MOST-04-2221-E-009-165). The authors are also grateful to Dr. Chi-Tin Shih and Dr. Nan-Yow Chen for their helping in providing the concepts.

References

  1. Bargmann, C.I. (2012). Beyond the connectome: How neuromodulators shape neural circuits. Bioessays, 34(6), 458–65. http://dx.doi.org/https://doi.org/10.1002/bies.201100185.
  2. Bishop, C. (2006). Pattern recognition and machine learning (information science and statistics). New York: Springer.Google Scholar
  3. Breu, H., Gil, J., Kirkpatrick, D., & Werman, M. (1995). Linear time euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5), 529–533.CrossRefGoogle Scholar
  4. Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., Wu, C.C., Chen, G.Y., Ching, Y.T., Lee, P.C., Lin, C.Y., Lin, H.H., Wu, C.C., Hsu, H.W., Huang, Y.A., Chen, J.Y., Chiang, H.J., Lu, C.F., Ni, R.F., Yeh, C.Y., & Hwang, J.K. (2011). Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Current Biology, 21, 1–11. https://doi.org/10.1016/j.cub.2010.11.056.CrossRefPubMedGoogle Scholar
  5. Chothani, P., Mehta, V., & Stepanyants, A. (2011). Automated tracing of neurites from light microscopy stacks of images. Neuroinform, 9, 263–278. https://doi.org/10.1007/s12021-011-9121-2.CrossRefGoogle Scholar
  6. Cohen, A.R., Roysam, B., & Turner, J.N. (1994). Automated tracing and volume measurements of neurons from 3-d confocal fluorescence microscopy data. Journal of Microscopy, 173 (Pt2), 103–114. https://doi.org/10.1111/j.1365-2818.1994.tb03433.x.CrossRefPubMedGoogle Scholar
  7. Donohue, D.E., & Ascoli, G.A. (2011). Automated reconstruction of neuronal morphology: an overview. Brain Research Reviews, 67, 94–102. https://doi.org/10.1016/j.brainresrev.2010.11.003.CrossRefPubMedGoogle Scholar
  8. El-Laithy, K., Knorr, M., Ks, J., & Bogdan, M. (2012). Digital detection and analysis of branching and cell contacts in neural cell cultures. Journal of Neuroscience Methods, 210, 206–219. pmid:22841,629 https://doi.org/10.1016/j.jneumeth.2012.07.007.CrossRefPubMedGoogle Scholar
  9. Gala, R., Chapeton, J., Jitesh, J., Bhavsar, C., & Stepanyants, A. (2014). Active learning of neuron morphology for accurate automated tracing of neurites. Frontiers in Neuroanatomy, 8, 37. https://doi.org/10.3389/fnana.2014.00037.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ho, S.Y., Chao, C.Y., Huang, H.L., Chiu, T.W., Charoenkwan, P., & Hwang, E. (2011). Neurphologyj: an automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-12-230.
  11. Kayasandik, C.B., & Labate, D. (2016). Improved detection of soma location and morphology in fluorescence microscopy images of neurons. Journal of Neuroscience Methods, 274, 61–70. https://doi.org/10.1016/j.jneumeth.2016.09.007.CrossRefPubMedGoogle Scholar
  12. Kim, K.M., Son, K., & Palmore, G.T.R. (2015). Neuron image analyzer: Automated and accurate extraction of neuronal data from low quality images. Scientific Reports, 5, 17062. https://doi.org/10.1038/srep17062.
  13. Lee, P.C., Chuang, C.C., Chiang, A.S., & Ching, Y.T. (2012). Highthroughput computer method for 3d neuronal structure reconstruction from the image stack of the drosophila brain and its applications. PLoS Computational Biology, 8(9), e1002,658. https://doi.org/10.1371/journal.pcbi.1002658.CrossRefGoogle Scholar
  14. Liu, S., Zhang, D., Liu, S., Feng, D., Peng, H., & Cai, W. (2016). Rivulet: 3d neuron morphology tracing with iterative back-tracking. Neuroinformatics, 14, 1–15. https://doi.org/10.1007/s12021-016-9302-0.CrossRefGoogle Scholar
  15. Liu, S., Zhang, D., Song, Y., Peng, H., & Cai, W. (2017). Automated 3d neuron tracing with precise branch erasing and confidence controlled back-tracking. bioRxiv. https://doi.org/10.1101/109892.
  16. Lu, J., Fiala, J.C., & Lichtman, J.W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS One, 4, 9e5655.t. https://doi.org/10.1371/journal.pone.0005655.CrossRefGoogle Scholar
  17. Myatt, D.R., Hadlington, T., Ascoli, G.A., & Nasuto, S.J. (2012). Neuromantic–from semi-manual to semi-automatic reconstruction of neuron morphology. Fronteras Neuroinform, 6, 4. https://doi.org/10.3389/fninf.2012.00004.Google Scholar
  18. Ozcan, B., Negi, P., Laezza, F., Papadakis, M., & Labate, D. (2015). Automated detection of soma location and morphology in neuronal network cultures. PloS One, 10 (4), e0121886. https://doi.org/10.1371/journal.pone.0121886.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pawley, J.B. (2006). Handbook of biological confocal microscopy. New York: Springer.CrossRefGoogle Scholar
  20. Peng, H., Long, F., & Myers, G. (2011). Automatic 3d neuron tracing using all-path pruning. Bioinformatics, 27(13), i239–i247. https://doi.org/10.1093/bioinformatics/btr237.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., & Ascoli, G.A. (2015a). Bigneuron: large-scale 3d neuron reconstruction from optical microscopy images. Neuron, 87(2), 252–256. https://doi.org/10.1016/j.neuron.2015.06.036.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Peng, H., Meijering, E., & Ascoli, G.A. (2015b). From diadem to bigneuron. Neuroinformatics, 13(3), 259–260. https://doi.org/10.1007/s12021-015-9270-9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pool, M., Thiemann, J., Bar-Or, A., & Fournier, A.E. (2008). Neuritetracer: a novel imagej plugin for automated quantification of neurite outgrowth. Journal of Neuroscience Methods, 168(1), 134–139. https://doi.org/10.1016/j.jneumeth.2007.08.029.CrossRefPubMedGoogle Scholar
  24. Shih, C.T., Sporns, O., Yuan, S.L., Su, T.S., Lin, Y.J., Chuang, C.C., Wang, T.Y., Lo, C.C., Greenspan, R.J., & Chiang, A. S. (2015). Connectomics-based analysis of information flow in the drosophila brain. Current Biology, 25(10), 1249–58. https://doi.org/10.1016/j.cub.2015.03.021.CrossRefPubMedGoogle Scholar
  25. Snyman, J. (2005). Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Berlin: Springer Publishing.Google Scholar
  26. Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), p.e42. https://doi.org/10.1371/journal.pcbi.0010042.CrossRefGoogle Scholar
  27. Sui, D., Wang, K., Chae, J., Zhang, Y., & Zhang, H. (2014). A pipeline for neuron reconstruction based on spatial sliding volume filter seeding. Computational and mathematical methods in medicines https://doi.org/10.1155/2014/386974.
  28. Wang, Y., Narayanaswamy, A., Tsai, C.L., & Roysam, B. (2011). A broadly applicable 3-d neuron tracing method based on opencurve snake. Neuroinform, 9(2-3), 193–217. https://doi.org/10.1007/s12021-011-9110-5.CrossRefGoogle Scholar
  29. Weaver, C.M., Pinezich, J.D., Lindquist, W.B., & Vazquez, M.E. (2003). An algorithm for neurite outgrowth reconstruction. Journal of Neuroscience Methods, 124, 197–205. https://doi.org/10.1016/S0165-0270(03)00017-7.CrossRefPubMedGoogle Scholar
  30. Xiao, H., & Peng, H. (2013). App2: automatic tracing of 3d neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29(11), 1448–1454. https://doi.org/10.1093/bioinformatics/btt170.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yang, J., Gonzalez-Bellido, P.T., & Peng, H. (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14(1), 93. https://doi.org/10.1186/1471-2105-14-93.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhang, D., Liu, S., Liu, S., Feng, D., Peng, H., & Cai, W. (2016). Sub-voxel reconstruction of 3d neuron morphology using rivulet back-tracking. The IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2016).Google Scholar
  33. Zhou, Z., Sorensen, S., Zeng, H., Hawrylycz, M., & Peng, H. (2015). Adaptive image enhancement for tracing 3d morphologies of neurons and brain vasculatures. Neuroinform, 13, 153–166. https://doi.org/10.1007/s12021-014-9249-y.CrossRefGoogle Scholar
  34. Zhou, Z., Liu, X., Long, B., & Peng, H. (2016). Tremap automatic 3d neuron reconstruction based on tracing, reverse mapping and assembling of 2d projections. Frontiers Neuroinform 14(1), 41–50. https://doi.org/10.1007/s12021-015-9278-1.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Guan-Wei He
    • 1
  • Ting-Yuan Wang
    • 2
  • Ann-Shyn Chiang
    • 2
    • 3
  • Yu-Tai Ching
    • 1
  1. 1.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Institute of Biotechnology and Department of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Brain Research CenterNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations