Neuroinformatics

, Volume 15, Issue 3, pp 285–295 | Cite as

Transcriptome Architecture of Adult Mouse Brain Revealed by Sparse Coding of Genome-Wide In Situ Hybridization Images

  • Yujie Li
  • Hanbo Chen
  • Xi Jiang
  • Xiang Li
  • Jinglei Lv
  • Meng Li
  • Hanchuan Peng
  • Joe Z. Tsien
  • Tianming Liu
Original Article

Abstract

Highly differentiated brain structures with distinctly different phenotypes are closely correlated with the unique combination of gene expression patterns. Using a genome-wide in situ hybridization image dataset released by Allen Mouse Brain Atlas, we present a data-driven method of dictionary learning and sparse coding. Our results show that sparse coding can elucidate patterns of transcriptome organization of mouse brain. A collection of components obtained from sparse coding display robust region-specific molecular signatures corresponding to the canonical neuroanatomical subdivisions including fiber tracts and ventricular systems. Other components revealed finer anatomical delineation of domains previously considered homogeneous. We also build an open-access informatics portal that contains the detail of each component along with its ontology and expressed genes. This portal allows intuitive visualization, interpretation and explorations of the transcriptome architecture of a mouse brain.

Keywords

Sparse coding Data-driven gene clustering Transcriptome Mouse brain anatomy 

Supplementary material

12021_2017_9333_MOESM1_ESM.docx (4.6 mb)
ESM 1(DOCX 4685 kb)

References

  1. Belgard, T. G., Marques, A. C., Oliver, P. L., et al. (2011). A transcriptomic atlas of mouse neocortical layers. Neuron, 71, 605–616. doi:10.1016/j.neuron.2011.06.039.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bernard, A., Lubbers, L. S., Tanis, K. Q., et al. (2012). Transcriptional architecture of the primate neocortex. Neuron, 73, 1083–1099. doi:10.1016/j.neuron.2012.03.002.Transcriptional.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bohland, J. W., Bokil, H., Pathak, S. D., et al. (2010). Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods, 50, 105–112. doi:10.1016/j.ymeth.2009.09.001.CrossRefPubMedGoogle Scholar
  4. Cahoy, J., Emery, B., Kaushal, A., et al. (2004). A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. Journal of Neuro-Oncology, 28, 264–278. doi:10.1523/JNEUROSCI.4178-07.2008.Google Scholar
  5. Chen, H., Liu, T., Zhao, Y., et al. (2015). Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data. NeuroImage, 115, 202–213. doi:10.1016/j.neuroimage.2015.04.050.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Comon, P. (1994). Independent component analysis: A new concept. IEEE Trans Signal Process, 36, 287–314. doi:10.1016/0165-1684(94)90029-9.Google Scholar
  7. Dong, H. (2008). Allen reference atlas. A digital color brain atlas of the C57BL/6J male mouse - by H. W. Dong. John Wiley & Sons.Google Scholar
  8. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15, 3736–3745. doi:10.1109/ICIG.2009.101.CrossRefPubMedGoogle Scholar
  9. Hawrylycz, M., Bernard, A., Lau, C., et al. (2010). Areal and laminar differentiation in the mouse neocortex using large scale gene expression data. Methods, 50, 113–121. doi:10.1016/j.ymeth.2009.09.005.CrossRefPubMedGoogle Scholar
  10. Heintz, N. (2004). Gene expression nervous system atlas (GENSAT). Nature Neuroscience, 7, 483. doi:10.1038/nn0504-483.CrossRefPubMedGoogle Scholar
  11. Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626–634. doi:10.1109/72.761722.CrossRefPubMedGoogle Scholar
  12. Ishizuka, N., Weber, J., & Amaral, D. (1990). Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. The Journal of Comparative Neurology, 295, 580–623.CrossRefPubMedGoogle Scholar
  13. Jiang, C. H., Tsien, J. Z., Schultz, P. G., & Hu, Y. (2001). The effects of aging on gene expression in the hypothalamus and cortex of mice. PNAS, 98, 1930–1934. doi:10.1073/pnas.98.4.1930.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lein, E. S., Hawrylycz, M. J., Ao, N., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445, 168–176. doi:10.1038/nature05453.CrossRefPubMedGoogle Scholar
  15. Lein, E. S., Zhao, X., & Gage, F. H. (2004). Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. The Journal of Neuroscience, 24, 3879–3889. doi:10.1523/JNEUROSCI.4710-03.2004.CrossRefPubMedGoogle Scholar
  16. Lv, J., Jiang, X., Li, X., et al. (2015). Sparse representation of whole-brain fMRI signals for identification of functional networks. Medical Image Analysis, 20, 112–134. doi:10.1016/j.media.2014.10.011.CrossRefPubMedGoogle Scholar
  17. Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 19–60.Google Scholar
  18. Mairal, J., Elad, M., & Sapiro, G. (2008). Sparse representation for color image restoration. IEEE Transactions on Image Processing, 17, 53–69. doi:10.1109/TIP.2007.911828.CrossRefPubMedGoogle Scholar
  19. Mody, M., Cao, Y., Cui, Z., et al. (2001). Genome-wide gene expression profiles of the developing mouse hippocampus. PNAS, 98, 8862–8867. doi:10.1073/pnas.141244998.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Molyneaux, B. J., Arlotta, P., Menezes, J. R. L., & Macklis, J. D. (2007). Neuronal subtype specification in the cerebral cortex. Nature Reviews. Neuroscience, 8, 427–437. doi:10.1038/nrn2151.CrossRefPubMedGoogle Scholar
  21. Mortazavi, A., Williams, B. A., McCue, K., et al. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628. doi:10.1038/nmeth.1226.CrossRefPubMedGoogle Scholar
  22. Nelson, S. B., Sugino, K., & Hempel, C. M. (2006). The problem of neuronal cell types: a physiological genomics approach. Trends in Neurosciences, 29, 339–345. doi:10.1016/j.tins.2006.05.004.CrossRefPubMedGoogle Scholar
  23. Ng, L., Bernard, A., Lau, C., et al. (2009). An anatomic gene expression atlas of the adult mouse brain. Nature Neuroscience, 12, 356–362. doi:10.1038/nn.2281.CrossRefPubMedGoogle Scholar
  24. Thompson, C. L., Pathak, S. D., Jeromin, A., et al. (2008). Genomic anatomy of the hippocampus. Neuron, 60, 1010–1021. doi:10.1016/j.neuron.2008.12.008.CrossRefPubMedGoogle Scholar
  25. Tole, S., Christian, C., & Grove, E. A. (1997). Early specification and autonomous development of cortical fields in the mouse hippocampus. Development, 124, 4959–4970.PubMedGoogle Scholar
  26. Tsien, J., Li, M., Osan, R., et al. (2013). On initial brain activity mapping of episodic and semantic memory code in the hippocampus. Neurobiology of Learning and Memory, 105, 200–210. doi:10.1016/j.nlm.2013.06.019.On.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Winden, K. D., Oldham, M. C., Mirnics, K., et al. (2009). The organization of the transcriptional network in specific neuronal classes. Molecular Systems Biology, 5, 1–18. doi:10.1038/msb.2009.46.CrossRefGoogle Scholar
  28. Woodhams, P., Celio, M., Ulfig, N., & Witter, M. (1993). Morphological and functional correlates of borders in the entorhinal cortex and hippocampus. Hippocampus, 3, 303–312. doi:10.1002/hipo.1993.4500030733.PubMedGoogle Scholar
  29. Zeisel, A., Manchado, A.B.M., Codeluppi, S., et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347(80- ), 1138–42. doi: 10.1126/science.aaa1934.
  30. Zhao, X., Lein, E. S., He, A., et al. (2001). Transcriptional profiling reveals strict boundaries between hippocampal subregions. The Journal of Comparative Neurology, 441, 187–196. doi:10.1002/cne.1406.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yujie Li
    • 1
  • Hanbo Chen
    • 1
  • Xi Jiang
    • 1
  • Xiang Li
    • 1
  • Jinglei Lv
    • 1
    • 2
  • Meng Li
    • 4
  • Hanchuan Peng
    • 3
  • Joe Z. Tsien
    • 4
  • Tianming Liu
    • 1
  1. 1.Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensUSA
  2. 2.School of AutomationNorthwestern Polytechnical UniversityXi’anChina
  3. 3.Allen Institute for Brain ScienceSeattleUSA
  4. 4.Brain and Behavior Discovery InstituteMedical College of Georgia at Augusta UniversityAugustaUSA

Personalised recommendations