, Volume 15, Issue 2, pp 133–149 | Cite as

SparseTracer: the Reconstruction of Discontinuous Neuronal Morphology in Noisy Images

Original Article


Digital reconstruction of a single neuron occupies an important position in computational neuroscience. Although many novel methods have been proposed, recent advances in molecular labeling and imaging systems allow for the production of large and complicated neuronal datasets, which pose many challenges for neuron reconstruction, especially when discontinuous neuronal morphology appears in a strong noise environment. Here, we develop a new pipeline to address this challenge. Our pipeline is based on two methods, one is the region-to-region connection (RRC) method for detecting the initial part of a neurite, which can effectively gather local cues, i.e., avoid the whole image analysis, and thus boosts the efficacy of computation; the other is constrained principal curves method for completing the neurite reconstruction, which uses the past reconstruction information of a neurite for current reconstruction and thus can be suitable for tracing discontinuous neurites. We investigate the reconstruction performances of our pipeline and some of the best state-of-the-art algorithms on the experimental datasets, indicating the superiority of our method in reconstructing sparsely distributed neurons with discontinuous neuronal morphologies in noisy environment. We show the strong ability of our pipeline in dealing with the large-scale image dataset. We validate the effectiveness in dealing with various kinds of image stacks including those from the DIADEM challenge and BigNeuron project.


Digital reconstruction Automatic tracing Neuronal morphology Constrained principal curves 


  1. Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of tubular objects. Neuroinformatics, 9(2–3), 181–191.CrossRefPubMedGoogle Scholar
  2. Bas, E., Erdogmus, D., Draft, R. W., & Lichtman, J. W. (2012). Local tracing of curvilinear structures in volumetric color images: application to the Brainbow analysis. Journal of Visual Communication and Image Representation, 23, 1260–1271.CrossRefGoogle Scholar
  3. Bria A, Iannello G, Peng H. (2015). An open-source VAA3D plugin for real-time 3D visualization of terabyte-sized volumetric images. 2015 I.E. 12th International Symposium on Biomedical Imaging (ISBI). IEEE, 2015: 520–523.Google Scholar
  4. Brown, K., Barrionuevo, G., Canty, A., De Paola, V., Hirsch, J., Jefferis, G., et al. (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9(2), 143–157.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen, H., Xiao, H., Liu, T., & Peng, H. (2015). SmartTracing: self-learning-based neuron reconstruction. Brain Informatics, 2, 135–144.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cohen, A.R., Roysam, B. & Turner, J.N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. J Microsc, 173, 103–114.Google Scholar
  7. Donohue, D. E., & Ascoli, G. A. (2011). Automated reconstruction of neuronal morphology: an overview. Brain Research Reviews, 67(1–2), 94–102.CrossRefPubMedGoogle Scholar
  8. Gala, R., Chapeton, J., Jitesh, J., Bhavsar, C., & Stepanyants, A. (2014). Active learning of neuron morphology for accurate automated tracing of neurites. Frontiers in Neuroanatomy, 8(37), 1–14.Google Scholar
  9. Gong, H., Zeng, S., Yan, C., Lv, X., Yang, Z., Xu, T., Feng, Z., Ding, W., Qi, X., Li, A., Wu, J., & Luo, Q. (2013). Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage, 74, 87–98.CrossRefPubMedGoogle Scholar
  10. Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84(406), 502–516.CrossRefGoogle Scholar
  11. Jefferis, G., & Livet, J. (2012). Sparse and combinatorial neuron labeling. Current Opinion in Neurobiology, 22, 101–110.CrossRefPubMedGoogle Scholar
  12. Jefferis, G., Potter, C., Chan, A., Marin, E., Rohlfing, T., Maurer, C., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell, 128(6), 1187–1203.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Josh Huang, Z., & Zeng, H. (2013). Genetic approaches to neural circuits in the mouse. Annual Review of Neuroscience, 36, 183–215.CrossRefPubMedGoogle Scholar
  14. Lu, J. (2011). Neuronal tracing for Connectomic studies. Neuroinformatics, 9(2–3), 159–166.CrossRefPubMedGoogle Scholar
  15. Luo, L., Callaway, E. M., & Svoboda, K. (2008). Genetic dissection of neural circuits. Neuron, 57(5), 634–660.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Luo, G., Sui, D., Wang, K., et al. (2015). Neuron anatomy structure reconstruction based on a sliding filter. BMC Bioinformatics, 16(1), 342.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Meijering, E. (2010). Neuron tracing in perspective. Cytometry Part A, 77A(7), 693–704.CrossRefGoogle Scholar
  18. Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., Zeng, S., & Liu, Q. (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PloS One, 8(12), e84–557.CrossRefGoogle Scholar
  19. Neurolucida (2014). MBF Bioscience: stereology and neuron morphology quantitative analysis.
  20. Parekh, R., & Ascoli, G. A. (2013). Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6), 1017–1038.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Peng, H., Long, F., & Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Peng, H., Hawrylycz, M., Roskams, J., et al. (2015a). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87(2), 252–256.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Peng, H., Meijering, E., & Ascoli, G. A. (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13, 259–260.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Quan, T., et al. (2013). NeuroGPS: automated localization of neurons for brain circuits using L1minimization model. Scientific Reports, Rep. 3, 1414.Google Scholar
  25. Quan, T., et al. (2014). Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinated variational model. Scientific Reports, 4, 4970.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Quan, T., et al. (2016). NeuroGPS-Tree: automatic reconstruction of a large-scale neuronal population with dense neurites. Nature Methods, 13(1), 51–54.Google Scholar
  27. Radojevie, M., Smal, I. & Meijering, E. (2015). Automated neuron morphology reconstruction using fuzzy-logic detection and Bayesian tracing algorithms. Biomedical Imaging (ISBI), 2015 I.E. 12th International Symposium on, 885–888.Google Scholar
  28. Rodriguez, A., Ehlenberger, D., Hof, P., & Wearne, S. (2006). Rayburst sampling, an algorithm for automated three- dimensional shape analysis from laser scanning microscopy images. Nature Protocols, 1(4), 2152–2161.CrossRefPubMedGoogle Scholar
  29. Rodriguez, A., Ehlenberger, D., Hof, P., & Wearne, S. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rotolo, T., Smallwood, P., Williams, J., & Nathans, J. (2008). Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology. PloS One, 3(12), 1–13.CrossRefGoogle Scholar
  31. Santamaría-Pang, A., Hernandez-Herrera, P., Papadakis, M., Saggau, P., & Kakadiaris, A. I. (2015). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images using 3D tubular models. Neuroinformatics, 13(3), 297–320.CrossRefPubMedGoogle Scholar
  32. Schwarz, L., & Luo, L. (2015). Organization of the Locus coeruleus-norepinephrine system. Current Biology, 25(21), 1051–1056.CrossRefGoogle Scholar
  33. Silvestri, L., Bria, A., Sacconi, L., Iannello, G., & Pavone, F. (2012). Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Optics Express, 20(18), 20582–20598.CrossRefPubMedGoogle Scholar
  34. Srinivasan, R., Li, Q., Zhou, X., Lu, J., Lichtman, J., & Wong, S. (2010). Reconstruction of the neuromuscular junction connectome. Bioinformatics, 26(12), i64–i70.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Turetken, E., Benmansour, F. & Fua, P. (2012). Automated reconstruction of tree structures using path classifiers and mixed integer programming. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) (pp. 566–573). Rhode Island.Google Scholar
  36. Turetken, E., Benmansour, F., Andres, B., Pfister, H. & Fua, P. (2013). Reconstructing loopy curvilinear structures using integer programming. In Proceedings of the IEEE, CVPR (pp. 1822–1829). Portland.Google Scholar
  37. Turetken, E., Benmansour, F., Andres, B., Głowacki, P. &Pfister, H. (2014). Reconstructing Curvilinear Networks using Path Classifiers and Integer Programming. IEEE Transactions on Pattern Analysis and Machine Intelligence. Google Scholar
  38. Wang, Y., Narayanaswamy, A. & Roysam, B. (2011a). Novel 4-D open-curve active contour and curve completion approach for automated tree structure extraction. In Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE (pp. 1105–1112). Colorado Springs.Google Scholar
  39. Wang, Y., Narayanaswamy, A., Tsai, C.-L., & Roysam, B. (2011b). A broadly applicable 3-D neuron tracing method based on open curve snake. Neuroinformatics, 9(2–3), 193–217.CrossRefPubMedGoogle Scholar
  40. Wilt, B. A., Burns, L. D., Wei Ho, E. T., Ghosh, K. K., Mukamel, E. A., & Schnitzer, M. J. (2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435–506.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29(11), 1448–1454.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xiong, H., Zhou, Z., Zhu, M., Lv, X., Li, A., Li, S., Li, L., Yang, T., Wang, S., Yang, Z., Xu, T., Luo, Q., Gong, H., & Zeng, S. (2014). Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nature Communications, 5, 4992.CrossRefGoogle Scholar
  43. Yang, J., Gonzalez-Bellido, P. T., & Peng, H. (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14(1), 93.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yang, T., Zheng, T., Shang, Z., Wang, X., Lv, X., Yuan, J., & Zeng, S. (2015). Rapid imaging of large tissues using high-resolution stage-scanning microscopy. Biomedical Optics Express, 6(5), 1867–1875.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yuan, X., Trachtenberg, J., Potter, S., & Roysam, B. (2009). MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7, 213–232.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zhao, T., Xie, J., Amat, F., Clack, F., Ahammad, P., Peng, H., Long, F., & Myers, E. (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9(2–3), 247–261.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zheng, T., et al. (2013). Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Optics Express, 21(8), 9839–9850.CrossRefPubMedGoogle Scholar
  48. Zhou, Z., Sorensen, S. & Peng, H. (2015).Neuron crawler: an automatic tracing algorithm for very large neuron images, Proc. of IEEE 2015 International Symposiumon Biomedical Imaging: From Nano to Macro, 870–874.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shiwei Li
    • 1
    • 2
  • Hang Zhou
    • 1
    • 2
  • Tingwei Quan
    • 1
    • 2
    • 3
  • Jing Li
    • 1
    • 2
  • Yuxin Li
    • 1
    • 2
  • Anan Li
    • 1
    • 2
  • Qingming Luo
    • 1
    • 2
  • Hui Gong
    • 1
    • 2
  • Shaoqun Zeng
    • 1
    • 2
  1. 1.Britton Chance Center for Biomedical PhotonicsHuazhong University of Science and Technology-Wuhan National Laboratory for OptoelectronicsWuhanChina
  2. 2.MoE Key Laboratory for Biomedical Photonics, Department of Biomedical EngineeringHuazhong University of Science and TechnologyWuhanChina
  3. 3.School of Mathematics and StatisticsHubei University of EducationWuhanChina

Personalised recommendations