Neuroinformatics

, Volume 15, Issue 1, pp 13–24 | Cite as

Classification of Normal and Pathological Gait in Young Children Based on Foot Pressure Data

  • Guodong Guo
  • Keegan Guffey
  • Wenbin Chen
  • Paola Pergami
Original Article

Abstract

Human gait recognition, an active research topic in computer vision, is generally based on data obtained from images/videos. We applied computer vision technology to classify pathology-related changes in gait in young children using a foot-pressure database collected using the GAITRite walkway system. As foot positioning changes with children’s development, we also investigated the possibility of age estimation based on this data. Our results demonstrate that the data collected by the GAITRite system can be used for normal/pathological gait classification. Combining age information and normal/pathological gait classification increases the accuracy of the classifier. This novel approach could support the development of an accurate, real-time, and economic measure of gait abnormalities in children, able to provide important feedback to clinicians regarding the effect of rehabilitation interventions, and to support targeted treatment modifications.

Keywords

Normal/pathological gait recognition GAITRite walkway system Medical instrument Health application 

References

  1. Aggarwal, J., & Ryoo, M. (2011). Human activity analysis: A review. ACM Computing Surveys, 43(3), 16:1–16:43.CrossRefGoogle Scholar
  2. Alam, M., & Hamida, E. (2014). Surveying wearable human assistive technology for life and safety critical applications: Standards, challenges and opportunities. Sensors, 14(5), 9153–9209.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beck, R., Andriacchi, T., Kuo, K., Fermier, R., & Galante, J. (1981). Changes in the gait patterns of growing children. Journal of Bone and Joint Surgery, 63(9), 1452–1457.CrossRefPubMedGoogle Scholar
  4. Belda-Lois, J.M., del Horno, S.M., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Iosa, M., Molinari, M., Tamburella, F., Ramos, A., Caria, A., Solis-Escalante, T., Brunner C., & Rea, M. (2011). Rehabilitation of gait after stroke: A review towards a top-down approach. Journal of neuroengineering and rehabilitation, 8, 66.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bilney, B., Morris, M., & Webster, K. (2003). Concurrent related validity of the gaitrite® walkway system for quantification of the spatial and temporal parameters of gait. Gait & posture, 17(1), 68–74.CrossRefGoogle Scholar
  6. Bladen, M., Alderson, L., Khair, K., Liesner, R., Green, J., & Main, E. (2007). Can early subclinical gait changes in children with haemophilia be identified using the gaitrite® walkway. Haemophilia, 13(5), 542–547.CrossRefPubMedGoogle Scholar
  7. Bonato, P. (2005). Advances in wearable technology and applications in physical medicine and rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2(1), 2.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boulay, B., Brémond, F., & Thonnat, M. (2006). Applying 3d human model in a posture recognition system. Pattern Recognition Letters, 27(15), 1788–1796.CrossRefGoogle Scholar
  9. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.CrossRefGoogle Scholar
  10. Cai, D., He, X., Han, J., & Zhang, H. (2006). Orthogonal laplacianfaces for face recognition. Image Processing. Transactions on IEEE, 15(11), 3608–3614.Google Scholar
  11. Cook, R.E., Schneider, I., Hazlewood, M.E., Hillman, S.J., & Robb, J.E. (2003). Gait analysis alters decision-making in cerebral palsy. Journal of pediatric orthopedics, 23(3), 292–5.PubMedGoogle Scholar
  12. Crea, S., Donati, M., De Rossi, S.M.M., Oddo, C.M., & Vitiello, N. (2014). A wireless flexible sensorized insole for gait analysis. Sensors, 14(1), 1073–1093.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dusing, S., & Thorpe, D. (2007). A normative sample of temporal and spatial gait parameters in children using the gaitrite electronic walkway. Gait & posture, 25(1), 135–139.CrossRefGoogle Scholar
  14. Gafurov, D. (2007). A survey of biometric gait recognition: Approaches, security and challenges. In Annual Norwegian Computer Science Conference, pp 19–21.Google Scholar
  15. GAITRite, C. (2011). Gaitrite operating manual. In Havertown: CIR Systems, MAP/CIR Inc.Google Scholar
  16. Guo, G., Li, S., & Chan, K. (2000). Face recognition by support vector machines. In Automatic Face and Gesture Recognition, IEEE, pp 196–201.Google Scholar
  17. Hamers, F.P.T., Koopmans, G.C., & Joosten, E.A.J. (2006). Catwalkassisted gait analysis in the assessment of spinal cord injury. Journal of neurotrauma, 23(3), 537–48.CrossRefPubMedGoogle Scholar
  18. Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision: Cambridge university press.Google Scholar
  19. de-la Herran, A.M., Garcia-Zapirain, B., & Mendez-Zorrilla, A. (2014). Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors, 14(2), 3362–3394.CrossRefGoogle Scholar
  20. Kale, A., Sundaresan, A., Rajagopalan, A., Cuntoor, N., Roy-Chowdhury, A., Kruger, V., & Chellappa, R. (2004). Identification of humans using gait. Image Processing, 13(9), 1163–1173.CrossRefGoogle Scholar
  21. Kressig, R., & Beauchet, O. (2006). Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging clinical and experimental research, 18(2), 174–176.CrossRefPubMedGoogle Scholar
  22. Lance, J. (1980). Symposium synopsis. Spasticity: disordered motor control.Google Scholar
  23. Law, M., King, G., Russell, D., MacKinnon, E., Hurley, P., & Murphy, C. (1999). Measuring outcomes in children’s rehabilitation: a decision protocol. Archives of physical medicine and rehabilitation, 80(6), 629–36.CrossRefPubMedGoogle Scholar
  24. Leonard, C., & Hirschfeld, H. (1995). Myotatic reflex responses of non-disabled children and children with spastic cerebral palsy. Developmental Medicine & Child Neurology, 37(9), 783–799.CrossRefGoogle Scholar
  25. Linden, M., & Bjorkman, M. (2013). Embedded sensor systems for health-providing the tools in future healthcare. Studies in health technology and informatics, 200, 161–163.Google Scholar
  26. Liu, C., Nakashima, K., Sako, H., & Fujisawa, H. (2003). Handwritten digit recognition: benchmarking of state-of-the-art techniques. Pattern Recognition, 36(10), 2271–2285.CrossRefGoogle Scholar
  27. Majnemer, A. (2010). Benefits of using outcome measures in pediatric rehabilitation. Physical & occupational therapy in pediatrics, 30(3), 165–7.CrossRefGoogle Scholar
  28. Menz, H., Latt, M., Tiedemann, A., Mun San Kwan, M., & Lord, S. (2004). Reliability of the gaitrite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait & posture, 20(1), 20–25.CrossRefGoogle Scholar
  29. Naito, Y., Kimura, Y., Hashimoto, T., Mori, M., & Takemoto, Y. (2013). Quantification of gait using insole type foot pressure monitor: clinical application for chronic hemiplegia. Journal of UOEH, 36(1), 41–48.CrossRefGoogle Scholar
  30. Nelson, A., Zwick, D., Brody, S., Doran, C., Pulver, L., Rooz, G., Sadownick, M., Nelson, R., & Rothman, J. (2002). The validity of the gaitrite and the functional ambulation performance scoring system in the analysis of parkinson gait. NeuroRehabilitation, 17(3), 255–262.PubMedGoogle Scholar
  31. Nixon, M., & Carter, J. (2006). Automatic recognition by gait. Proceedings of the IEEE, 94(11), 2013–2024.CrossRefGoogle Scholar
  32. van den Noort, J.C., Ferrari, A., Cutti, A.G., Becher, J.G., & Harlaar, J. (2013). Gait analysis in children with cerebral palsy via inertial and magnetic sensors. Medical & biological engineering & computing, 51(4), 377–86.CrossRefGoogle Scholar
  33. Ostadabbas, S., Saeed, A., Nourani, M., & Pompeo, M. (2012). Sensor architectural tradeoff for diabetic foot ulcer monitoring. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp 6687–6690.Google Scholar
  34. Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: an application to face detection. In Computer Vision and Pattern Recognition, IEEE, pp 130–136.Google Scholar
  35. Pataky, T.C., Mu, T., Bosch, K., Rosenbaum, D., & Goulermas, J.Y. (2012). Gait recognition: highly unique dynamic plantar pressure patterns among 104 individuals. Journal of The Royal Society Interface, 9(69), 790–800.CrossRefGoogle Scholar
  36. Pellegrini, S., & Iocchi, L. (2008). Human posture tracking and classification through stereo vision and 3d model matching. Journal on Image and Video Processing, 2008, 7.Google Scholar
  37. Peng, B., & Qian, G. (2009). Binocular full-body pose recognition and orientation inference using multilinear analysis. In Tensors in Image Processing and Computer Vision, Springer, pp 215–236.Google Scholar
  38. Pontil, M., & Verri, A. (1998). Support vector machines for 3d object recognition. Pattern Analysis and Machine Intelligence, 20(6), 637–646.CrossRefGoogle Scholar
  39. Qian, G., Zhang, J., & Kidané, A. (2008). People identification using gait via floor pressure sensing and analysis. In Smart sensing and context, Springer, pp 83–98.Google Scholar
  40. Sarkar, S., Phillips, P., Liu, Z., Vega, I., Grother, P., & Bowyer, K. (2005). The humanid gait challenge problem: Data sets, performance, and analysis. Pattern Analysis and Machine Intelligence, 27(2), 162–177.CrossRefGoogle Scholar
  41. von Schroeder, H.P., Coutts, R.D., Lyden, P.D., Billings, E., & Nickel, V.L. (1995). Gait parameters following stroke: a practical assessment. Journal of rehabilitation research and development, 32(1), 25–31.PubMedGoogle Scholar
  42. Sutherland, D., Olshen, R., Cooper, L., & Woo, S. (1980). The development of mature gait. Journal of Bone and Joint Surgery, 62(3), 336–53.CrossRefPubMedGoogle Scholar
  43. Takeda, T., Ye, H., Taniguchi, K., Asari, K., Sakai, Y., Kuramoto, K., Kobashi, S., & Hata, Y. (2010). Foot age estimation by gait sole pressure changes. In 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), IEEE, pp 1204–1208.Google Scholar
  44. Vapnik, V. (1999). An overview of statistical learning theory. Neural Networks, 10(5), 988–999.CrossRefPubMedGoogle Scholar
  45. Wang, F., Stone, E., Skubic, M., Keller, J.M., Abbott, C., & Rantz, M. (2013). Toward a passive low-cost in-home gait assessment system for older adults. Biomedical and Health Informatics. Journal of IEEE, 17 (2), 346–355.Google Scholar
  46. Wang, J., She, M., Nahavandi, S., & Kouzani, A. (2010). A review of vision-based gait recognition methods for human identification. In International Conference on Digital Image Computing: Techniques and Applications (DICTA), IEEE, pp 320–327.Google Scholar
  47. Wang, L., Tan, T., Ning, H., & Hu, W. (2003). Silhouette analysis-based gait recognition for human identification. Pattern Analysis and Machine Intelligence, 25(12), 1505–1518.CrossRefGoogle Scholar
  48. Webb, A. (2003). Statistical pattern recognition: Wiley.Google Scholar
  49. Webster, K., Wittwer, J., & Feller, J. (2005). Validity of the gaitrite walkway system for the measurement of averaged and individual step parameters of gait. Gait & posture, 22(4), 317–321.CrossRefGoogle Scholar
  50. Yan, S., Xu, D., Zhang, B., & Zhang, H. (2005). Graph embedding: A general framework for dimensionality reduction. In Computer Vision and Pattern Recognition, IEEE, vol 2, pp 830–837.Google Scholar
  51. Yoo, J.H., & Nixon, M.S. (2011). Automated markerless analysis of human gait motion for recognition and classification. Etri Journal, 33(2), 259–266.CrossRefGoogle Scholar
  52. Yun, J. (2011). User identification using gait patterns on ubifloorii. Sensors, 11(3), 2611–2639.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Guodong Guo
    • 1
    • 2
    • 3
  • Keegan Guffey
    • 4
  • Wenbin Chen
    • 3
  • Paola Pergami
    • 5
  1. 1.Beijing Advanced Innovation Center for Imaging TechnologyBeijingPeople’s Republic of China
  2. 2.College of Information EngineeringCapital Normal UniversityBeijingChina
  3. 3.Lane Department of Computer Science and Electrical EngineeringWest Virginia UniversityMorgantownUSA
  4. 4.Child Neurology, Department of PediatricsWest Virginia UniversityMorgantownUSA
  5. 5.Neurology, Neurocritical care Children’s National Medical CenterWashingtonUSA

Personalised recommendations