, Volume 14, Issue 4, pp 387–401 | Cite as

Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking

  • Siqi LiuEmail author
  • Donghao Zhang
  • Sidong Liu
  • Dagan Feng
  • Hanchuan Peng
  • Weidong CaiEmail author
Original Article


The digital reconstruction of single neurons from 3D confocal microscopic images is an important tool for understanding the neuron morphology and function. However the accurate automatic neuron reconstruction remains a challenging task due to the varying image quality and the complexity in the neuronal arborisation. Targeting the common challenges of neuron tracing, we propose a novel automatic 3D neuron reconstruction algorithm, named Rivulet, which is based on the multi-stencils fast-marching and iterative back-tracking. The proposed Rivulet algorithm is capable of tracing discontinuous areas without being interrupted by densely distributed noises. By evaluating the proposed pipeline with the data provided by the Diadem challenge and the recent BigNeuron project, Rivulet is shown to be robust to challenging microscopic imagestacks. We discussed the algorithm design in technical details regarding the relationships between the proposed algorithm and the other state-of-the-art neuron tracing algorithms.


3D neuron reconstruction Neuron morphology 


  1. Adalsteinsson, D, & Sethian, JA (1995). A fast level set method for propagating interfaces. Journal of Computational Physics, 118(2), 269–277.CrossRefGoogle Scholar
  2. Alexander, AL, Lee, JE, Lazar, M, & Field, AS (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Basu, S, & Racoceanu, D (2014). Reconstructing neuronal morphology from microscopy stacks using fast marching. In 2014 IEEE international conference on image processing (ICIP) (pp 3597–3601).Google Scholar
  4. Brown, KM, Barrionuevo, G, Canty, AJ, De Paola, V, Hirsch, JA, Jefferis, GS, Lu, J, Snippe, M, Sugihara, I, & Ascoli, GA (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9(2–3), 143–157.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cesar, R Jr, & Costa, L (1999). Computer-vision-based extraction of neural dendrograms. Journal of Neuroscience Methods, 93(2), 121–131.CrossRefPubMedGoogle Scholar
  6. Chen, H, Xiao, H, Liu, T, & Peng, H (2015). Smarttracing: self-learning-based neuron reconstruction. Brain Informatics, 2(3), 135–144.CrossRefPubMedCentralGoogle Scholar
  7. Feng, L, Zhao, T, & Kim, J (2015). NeuTube 1.0: a new design for efficient neuron reconstruction software based on the swc format. eNeuro, 2(1), ENEURO–0049.CrossRefPubMedCentralGoogle Scholar
  8. Frangi, AF, Niessen, WJ, Vincken, KL, & Viergever, MA (1998). Multiscale vessel enhancement filtering. In Medical image computing and computer-assisted interventation (MICCAI) (pp. 130–137). Springer.Google Scholar
  9. González, G, Türetken, E, Fleuret, F, & Fua, P (2010). Delineating trees in noisy 2D images and 3D image-stacks. In 2010 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2799–2806). IEEE.Google Scholar
  10. Hassouna, MS, & Farag, AA (2007). Multistencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1563–1574.CrossRefPubMedGoogle Scholar
  11. Jameson, A, Schmidt, W, & Turkel, E (1981). Numerical solutions of the euler equations by finite volume methods using runge-kutta time-stepping schemes. AIAA paper 1259:1981.Google Scholar
  12. Krissian, K, Malandain, G, Ayache, N, Vaillant, R, & Trousset, Y (2000). Model-based detection of tubular structures in 3D images. Computer Vision and Image Understanding, 80(2), 130–171.CrossRefGoogle Scholar
  13. Leandro, J, Cesar, R Jr, & Costa, LF (2009). Automatic contour extraction from 2D neuron images. Journal of Neuroscience Methods, 177(2), 497–509.CrossRefPubMedGoogle Scholar
  14. Long, F, Zhou, J, & Peng, H (2012). Visualization and analysis of 3D microscopic images. PLoS Computational Biology, 8(6), e1002519–e1002519.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ming, X, Li, A, Wu, J, Yan, C, Ding, W, Gong, H, Zeng, S, & Liu, Q (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS ONE, 8(12), e84557.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mukherjee, A, & Stepanyants, A (2012). Automated reconstruction of neural trees using front re-initialization. In SPIE medical imaging, International society for optics and photonics (pp. 83,141I–83,141I).Google Scholar
  17. Mukherjee, S, Condron, B, & Acton, ST (2015). Tubularity flow field—a technique for automatic neuron segmentation. IEEE Transactions on Image Processing, 24(1), 374–389.CrossRefPubMedGoogle Scholar
  18. Parekh, R, & Ascoli, GA (2013). Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6), 1017–1038.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pawley, JB. (2006). Handbook of biological confocal microscopy, (pp. 20–42). Boston: Springer US , chap Fundamental Limits in Confocal Microscopy.CrossRefGoogle Scholar
  20. Peng, H, Ruan, Z, Long, F, Simpson, JH, & Myers, EW (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Peng, H, Long, F, & Myers, G (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239–i247.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Peng, H, Bria, A, Zhou, Z, Iannello, G, & Long, F (2014). Extensible visualization and analysis for multidimensional images using Vaa3D. Nature Protocols, 9(1), 193–208.CrossRefPubMedGoogle Scholar
  23. Peng, H, Hawrylycz, M, Roskams, J, Hill, S, Spruston, N, Meijering, E, & Ascoli, G (2015a). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87(2), 252–256.Google Scholar
  24. Peng, H, Meijering, E, & Ascoli, G (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13(3), 259–260.Google Scholar
  25. Santamaría-Pang, A, Hernandez-Herrera, P, Papadakis, M, Saggau, P, & Kakadiaris, IA (2015). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images using 3D tubular models. Neuroinformatics, 13(3), 297–320.CrossRefPubMedGoogle Scholar
  26. Sethian, JA. (1999). Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science (Vol. 3). Cambridge: Cambridge University Press.Google Scholar
  27. Tsitsiklis, JN (1995). Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40(9), 1528–1538.CrossRefGoogle Scholar
  28. Türetken, E, González, G, Blum, C, & Fua, P (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, 9(2–3), 279– 302.CrossRefPubMedGoogle Scholar
  29. Van Uitert, R, & Bitter, I (2007). Subvoxel precise skeletons of volumetric data based on fast marching methods. Medical Physics, 34(2), 627–638.CrossRefPubMedGoogle Scholar
  30. Wang, Y, Narayanaswamy, A, Tsai, CL, & Roysam, B (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9(2–3), 193–217.CrossRefPubMedGoogle Scholar
  31. Wearne, S, Rodriguez, A, Ehlenberger, D, Rocher, A, Henderson, S, & Hof, P (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136 (3), 661–680.CrossRefPubMedGoogle Scholar
  32. Xiao, H, & Peng, H (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29(11), 1448– 1454.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yang, J, Gonzalez-Bellido, PT, & Peng, H (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14(1), 93.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yuan, X, Trachtenberg, JT, Potter, SM, & Roysam, B (2009). MDL constrained 3D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7 (4), 213–232.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhang, D, Liu, S, Liu, S, Feng, D, Peng, H, & Cai, W (2016). Reconstruction of 3D neuron morphology using Rivulet back-tracking. In The IEEE international symposium on biomedical imaging: from nano to macro. IEEE.Google Scholar
  36. Zhao, T, Xie, J, Amat, F, Clack, N, Ahammad, P, Peng, H, Long, F, & Myers, E (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9(2–3), 247–261.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhou, Z, Sorensen, S, Zeng, H, Hawrylycz, M, & Peng, H (2014). Adaptive image enhancement for tracing 3D morphologies of neurons and brain vasculatures. Neuroinformatics, 13(2), 153–166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Information TechnologiesUniversity of SydneyDarlingtonAustralia
  2. 2.Allen Institute for Brain ScienceSeattleUSA

Personalised recommendations