Advertisement

Neuroinformatics

, Volume 14, Issue 1, pp 41–50 | Cite as

TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections

  • Zhi Zhou
  • Xiaoxiao Liu
  • Brian Long
  • Hanchuan PengEmail author
Original Article

Abstract

Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images.

Keywords

Neuron reconstruction 2D Projection Reverse mapping Virtual finger Vaa3D 

Notes

Acknowledgments

We thank Nuno da Costa, Staci Sorensen, Julie Harris, Raina D’Aleo, and Soumya Chatterjee for providing the images of mouse neurons, Paloma Gonzalez-Bellido for providing the images of dragonfly neurons, Hanbo Chen and Yujie Li for comments. This work is supported by the Allen Institute for Brain Science.

References

  1. DeFelipe, J., López-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Anderson, S., Burkhalter, A., Cauli, B., Fairén, A., & Feldmeyer, D. (2013). New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 14, 202–216.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Feng, L., Zhao, T., & Kim, J. (2015). NeuTube 1.0: a new design for efficient neuron reconstruction software based on the SWC format. eNeuro, 2, 0049–0014.CrossRefGoogle Scholar
  3. Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. Journal of Microscopy, 218, 52–61.PubMedCrossRefGoogle Scholar
  4. Gonzalez-Bellido, P. T., Peng, H., Yang, J., Georgopoulos, A. P., & Olberg, R. M. (2013). Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction. Proceedings of the National Academy of Sciences, 110, 696–701.CrossRefGoogle Scholar
  5. Kawaguchi, Y., Karube, F., & Kubota, Y. (2006). Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cerebral Cortex, 16, 696–711.PubMedCrossRefGoogle Scholar
  6. Krahe, T. E., El-Danaf, R. N., Dilger, E. K., Henderson, S. C., & Guido, W. (2011). Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. The Journal of Neuroscience, 31, 17437–17448.PubMedCrossRefGoogle Scholar
  7. Lu, J., Fiala, J. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS One, 4, e5655.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., Zeng, S., & Liu, Q. (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS One, 8, e84557.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Myatt, D. R., Hadlington, T., Ascoli, G. A., & Nasuto, S. J. (2012). Neuromantic–from semi-manual to semi-automatic reconstruction of neuron morphology. Frontiers in Neuroinformatics, 6, 4.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). 3-D image pre-processing algorithms for improved automated tracing of neuronal arbors. Neuroinformatics, 9, 219–231.PubMedCrossRefGoogle Scholar
  11. Peng, H., Ruan, Z., Atasoy, D., & Sternson, S. (2010). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26, i38–i46.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Peng, H., Long, F., & Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27, i239–i247.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Peng, H., Roysam, B., & Ascoli, G. A. (2013). Automated image computing reshapes computational neuroscience. BMC Bioinformatics, 14, 293.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Peng, H., Tang, J., Xiao, H., Bria, A., Zhou, J., Butler, V., Zhou, Z., Gonzalez-Bellido, P. T., Oh, S. W., & Chen, J. (2014). Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nature Communications, 5, 4342.PubMedPubMedCentralGoogle Scholar
  15. Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., & Ascoli, G. A. (2015a). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron. doi: 10.1016/j.neuron.2015.1006.1036.PubMedGoogle Scholar
  16. Peng, H., Meijering, E., & Ascoli, G. A. (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13, 9270. doi: 10.1007/s12021-015-9270-9.CrossRefGoogle Scholar
  17. Wan, Y., Long, F., Qu, L., Xiao, H., Hawrylycz, M., Myers, E. W., & Peng, H. (2015). BlastNeuron for automated comparison, retrieval and clustering of 3D neuron morphologies. Neuroinformatics. doi: 10.1007/s12021-12015-19272-12027.PubMedGoogle Scholar
  18. Wang, Y., Narayanaswamy, A., Tsai, C.-L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9, 193–217.PubMedCrossRefGoogle Scholar
  19. Wearne, S., Rodriguez, A., Ehlenberger, D., Rocher, A., Henderson, S., & Hof, P. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136, 661–680.PubMedCrossRefGoogle Scholar
  20. Wu, J., He, Y., Yang, Z., Guo, C., Luo, Q., Zhou, W., Chen, S., Li, A., Xiong, B., & Jiang, T. (2014). 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. NeuroImage, 87, 199–208.PubMedCrossRefGoogle Scholar
  21. Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29, 1448–1454.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Zhou, Z., Sorensen, S., & Peng, H. (2015) Neuron crawler: an automatic tracing algorithm for very large neuron images. Proceedings of IEEE 2015 International Symposium on Biomedical Imaging: From Nano to Macro, 870–874.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhi Zhou
    • 1
  • Xiaoxiao Liu
    • 1
  • Brian Long
    • 1
  • Hanchuan Peng
    • 1
    Email author
  1. 1.Allen Institute for Brain ScienceSeattleUSA

Personalised recommendations