, Volume 14, Issue 1, pp 121–127 | Cite as

EPBscore: a Novel Method for Computer-Assisted Analysis of Axonal Structure and Dynamics

  • S. SongEmail author
  • F. W. Grillo
  • J. Xi
  • V. Ferretti
  • G. Gao
  • V. De PaolaEmail author
News Item

Live brain imaging at cellular and synaptic resolution has dramatically improved our understanding of its organization and plasticity. A major issue in this field is the lack of automated tools to reliably analyze synaptic structures without heavily depending on the user’s subjectivity. As time-lapse imaging experiments can produce vast amounts of data, the tediousness of extracting key structural features of neurites such as the number, location and size of synaptic contacts through image analysis is a major bottleneck to perform large-scale studies. Unbiased quantitative tracking of large populations of synaptic sites is still challenging (Helmstaedter et al. 2011), despite the importance of understanding the principles of synaptic organization, connectivity and plasticity. This task is especially complex for axons and their boutons (Brown et al. 2011). Canonical cortical axons have a relatively simple structure, consisting of thin axonal shafts with uniform diameters (~100–1000 nm,...


Axons Axonal boutons Automated analysis Segmentation Synaptic plasticity Learning and memory Aging Presynaptic Connectivity In vivo 2-photon imaging 



We thank Karel Svoboda for support and for critical input on the initial development of EPBscore. Anthony Holtmaat, Linda Wilbrecht for help with an initial set of experiments. Lucien West, Jonathan Bowen, Dawn Thompson, Graham Little for help with the analysis. Cher Bachar for help with Matlab implementation. SS is supported by grants from NSFC (91332122 and 31171047), and a seed grant from the Center for Brain-inspired Computation Research. This work was funded by the Medical Research Council, UK.

Supplementary material

12021_2015_9274_MOESM1_ESM.docx (13.5 mb)
ESM 1 (DOCX 13781 kb)


  1. Brown, K. M., Barrionuevo, G., Canty, A. J., De Paola, V., Hirsch, J. A., Jefferis, G. S., Lu, J., Snippe, M., Sugihara, I., & Ascoli, G. A. (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9, 143–157.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Cai, H., Xu, X., Lu, J., Lichtman, J. W., Yung, S. P., & Wong, S. T. (2006). Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks. NeuroImage, 32, 1608–1620.PubMedCrossRefGoogle Scholar
  3. Canty, A. J., & De Paola, V. (2011). Axonal reconstructions going live. Neuroinformatics, 9, 129–131.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Canty, A. J., Huang, L., Jackson, J. S., Little, G. E., Knott, G., Maco, B., & De Paola, V. (2013a). In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nature Communications, 4, 2038.PubMedCrossRefGoogle Scholar
  5. Canty, A. J., Teles-Grilo Ruivo, L. M., Nesarajah, C., Song, S., Jackson, J. S., Little, G. E., & De Paola, V. (2013b). Synaptic elimination and protection after minimal injury depend on cell type and their prelesion structural dynamics in the adult cerebral cortex. Journal of Neuroscience, 33, 10374–10383.PubMedCrossRefGoogle Scholar
  6. Chen, J. L., Flanders, G. H., Lee, W. C., Lin, W. C., & Nedivi, E. (2011). Inhibitory dendrite dynamics as a general feature of the adult cortical microcircuit. Journal of Neuroscience, 31, 12437–12443.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chothani, P., Mehta, V., & Stepanyants, A. (2011). Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics, 9, 263–278.PubMedPubMedCentralCrossRefGoogle Scholar
  8. De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., & Svoboda, K. (2006). Cell Type-Specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49, 861–875.PubMedCrossRefGoogle Scholar
  9. Faisal, A. A., White, J. A., & Laughlin, S. B. (2005). Ion-Channel noise places limits on the miniaturization of the brain’s wiring. Current biology : CB, 15, 1143–1149.PubMedCrossRefGoogle Scholar
  10. Fu, M., Yu, X., Lu, J., & Zuo, Y. (2012). Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature, 483, 92–95.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Grillo, F. W., Song, S., Teles-Grilo Ruivo, L. M., Huang, L., Gao, G., Knott, G. W., Maco, B., Ferretti, V., Thompson, D., Little, G. E., et al. (2013). Increased axonal bouton dynamics in the aging mouse cortex. Proceedings of the National Academy of Sciences of the United States of America, 110, E1514–E1523.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Helmchen, F., & Denk, W. (2005). Deep tissue Two-Photon microscopy. Nature Methods, 2(12), 932–940.PubMedCrossRefGoogle Scholar
  13. Helmstaedter, M., Briggman, K. L., & Denk, W. (2011). High-Accuracy neurite reconstruction for High-Throughput neuroanatomy. Nature Neuroscience, 14, 1081–1088.PubMedCrossRefGoogle Scholar
  14. Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T., & Hubener, M. (2009). Experience leaves a lasting structural trace in cortical circuits. Nature, 457, 313–317.PubMedCrossRefGoogle Scholar
  15. Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E., & Svoboda, K. (2006). Experience-Dependent and Cell-Type-Specific spine growth in the neocortex. Nature, 441, 979–983.PubMedCrossRefGoogle Scholar
  16. Holtmaat, A., Bonhoeffer, T., Chow, D. K., Chuckowree, J., De Paola, V., Hofer, S. B., Hubener, M., Keck, T., Knott, G., Lee, W. C., et al. (2009). Long-term, High-Resolution imaging in the mouse neocortex through a chronic cranial window. Nature Protocols, 4, 1128–1144.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Keck, T., Scheuss, V., Jacobsen, R. I., Wierenga, C. J., Eysel, U. T., Bonhoeffer, T., & Hubener, M. (2011). Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron, 71, 869–882.PubMedCrossRefGoogle Scholar
  18. Koh, I. Y., Lindquist, W. B., Zito, K., Nimchinsky, E. A., & Svoboda, K. (2002). An image analysis algorithm for dendritic spines. Neural Computation, 14, 1283–1310.PubMedCrossRefGoogle Scholar
  19. Lee, P. C., He, H. Y., Lin, C. Y., Ching, Y. T., & Cline, H. T. (2013). Computer aided alignment and quantitative 4D structural plasticity analysis of neurons. Neuroinformatics, 11, 249–257.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Liebscher, S., Page, R. M., Kafer, K., Winkler, E., Quinn, K., Goldbach, E., Brigham, E. F., Quincy, D., Basi, G. S., Schenk, D. B., et al. (2013). Chronic Gamma-Secretase inhibition reduces amyloid Plaque-Associated instability of Pre- and postsynaptic structures. Molecular Psychiatry, 19, 937–946.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Loewenstein, Y., Kuras, A., & Rumpel, S. (2011). Multiplicative dynamics underlie the emergence of the Log-Normal distribution of spine sizes in the neocortex in vivo. Journal of Neuroscience, 31, 9481–9488.PubMedCrossRefGoogle Scholar
  22. Marik, S. A., Yamahachi, H., McManus, J. N., Szabo, G., & Gilbert, C. D. (2010). Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biology, 8, e1000395.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Mostany, R., Anstey, J. E., Crump, K. L., Maco, B., Knott, G., & Portera-Cailliau, C. (2013). Altered synaptic dynamics during normal brain aging. Journal of Neuroscience, 33, 4094–4104.PubMedCrossRefGoogle Scholar
  24. Nishiyama, H., Fukaya, M., Watanabe, M., & Linden, D. J. (2007). Axonal motility and its modulation by activity Are Branch-Type specific in the intact adult cerebellum. Neuron, 56, 472–487.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables Real-Time 3D visualization and quantitative analysis of Large-Scale biological image data sets. Nature Biotechnology, 28, 348–353.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Tsai, P.S., Nishimura, N., Yoder, E.J., White, A., Dolnick E., and Kleinfeld, D. (2002). Principles, design, and construction of a two photon laser scanning microscope for in vitro and in vivo brain imaging. In Methods for In Vivo Optical Imaging (R. Frostig, editor), 2002, CRC Press, pp. 113–171.Google Scholar
  27. Wang, Y., Narayanaswamy, A., Tsai, C. L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on Open-Curve snake. Neuroinformatics, 9, 193–217.PubMedCrossRefGoogle Scholar
  28. Wilson, C. S. (1984). Theory and practice of scanning optical microscopy. New York: Academic.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, School of Medicine, Center for Brain-inspired Computation ResearchTsinghua UniversityBeijingChina
  2. 2.MRC Clinical Science Centre, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations