Neuroinformatics

, Volume 13, Issue 4, pp 459–470 | Cite as

ModelView for ModelDB: Online Presentation of Model Structure

  • Robert A. McDougal
  • Thomas M. Morse
  • Michael L. Hines
  • Gordon M. Shepherd
Software Original Article

Abstract

ModelDB (modeldb.yale.edu), a searchable repository of source code of more than 950 published computational neuroscience models, seeks to promote model reuse and reproducibility. Code sharing is a first step; however, model source code is often large and not easily understood. To aid users, we have developed ModelView, a web application for ModelDB that presents a graphical view of model structure augmented with contextual information for NEURON and NEURON-runnable (e.g. NeuroML, PyNN) models. Web presentation provides a rich, simulator-independent environment for interacting with graphs. The necessary data is generated by combining manual curation, text-mining the source code, querying ModelDB, and simulator introspection. Key features of the user interface along with the data analysis, storage, and visualization algorithms are explained. With this tool, researchers can examine and assess the structure of hundreds of models in ModelDB in a standardized presentation without installing any software, downloading the model, or reading model source code.

Keywords

ModelDB Repository Visualization Code analysis 

References

  1. Crockford, D. (2006). The application/json media type for JavaScript object notation (JSON).Google Scholar
  2. Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., & Yger, P. (2008). PyNN: a common interface for neuronal network simulators. Frontiers in Neuroinformatics, 2.Google Scholar
  3. Davison, A.P., Mattioni, M., Samarkanov, D., & Sumatra, T.B. (2014). A toolkit for reproducible research. In V. Stodden, F. Leisch, & R.D. Peng (Eds.) Implementing reproducible, research (pp. 57–79). Boca Raton: Chapman & Hall/CRC.Google Scholar
  4. Gleeson, P., Steuber, V., & Silver, R.A. (2007). Neuroconstruct: a tool for modeling networks of neurons in 3D space. Neuron, 54(2), 219–235.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O., Farinella, M., Morse, T.M., Davison, A.P., Ray, S., Bhalla, U.S., Barnes, S.R., Dimitrova, Y.D., & Silver, R.A. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. Plos Computational Biology, 6(6), e1000815.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Hines, M.L., & Carnevale, N.T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–135.CrossRefPubMedGoogle Scholar
  7. Hines, M.L., Morse, T.M., & Carnevale, N.T. (2007). Model structural analysis in NEURON. Methods in Molecular Biology, 401, 91–102.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Kohn, M.C., Hines, M.L., Kootsey, J.M., & Feezor, M.D. (1994). A block organized model builder. Mathematical and Computer Modelling, 19(6), 75–97.CrossRefGoogle Scholar
  9. Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., & Hucka, M. (2006). BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34(suppl 1), D689–D691.PubMedCentralCrossRefPubMedGoogle Scholar
  10. McDougal, R.A., Hines, M.L., & Lytton, W.W. (2013). Reaction-diffusion in the NEURON simulator. Front Neuroinf, 7, 28.CrossRefGoogle Scholar
  11. Migliore, M., Hoffman, D.A., Magee, J.C., & Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.CrossRefPubMedGoogle Scholar
  12. Migliore, M., Morse, T.M., Davison, A.P., Marenco, L., Shepherd, G.M., & Hines, M.L. (2003). ModelDB: making models publicly accessible to support computational neuroscience. Neuroinformatics, 1, 135–139.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Morse, T.M., Carnevale, N.T., Mutalik, P.G., Migliore, M., & Shepherd, G.M. (2010). Abnormal excitability of oblique dendrites implicated in early Alzheimer’s: a computational study. Frontiers in Neural Circuits, 4, 16.PubMedCentralPubMedGoogle Scholar
  14. Podlaski, W.F., Ranjan, R., Seeholzer, Markram, H., Gerstner, W., & Vogels, T. (2013). Visualizing the similarity and pedigree of NEURON ion channel models available on ModelDB. Program No. 678.31. Neuroscience 2013 Abstracts. San Diego: Society for Neuroscience. Online.Google Scholar
  15. Rivest, R. (1992). The MD5 message-digest algorithm. RFC1321, Internet engineering task force.Google Scholar
  16. Usui, S. (2003). Visiome: neuroinformatics research in vision project. Neural Networks, 16(9), 1293–1300.CrossRefPubMedGoogle Scholar
  17. Vervaeke, K., Lorincz, A., Gleeson, P., Farinella, M., Nusser, Z., & Silver, R.A. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron, 67, 435–451.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Robert A. McDougal
    • 1
  • Thomas M. Morse
    • 1
  • Michael L. Hines
    • 1
  • Gordon M. Shepherd
    • 1
  1. 1.Department of NeurobiologyYale UniversityNew HavenUSA

Personalised recommendations